首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Numerical modeling of the long surface waves scattering for the 2011 Japan tsunami: Case study
Authors:E A Kulikov  I V Fine  O I Yakovenko
Institution:1. Shirshov Institute of Oceanology, Russian Academy of Sciences, Nakhimovskii pr. 36, Moscow, 117997, Russia
2. Institute of Ocean Sciences, Sidney, B.C., Canada
Abstract:The March 11, 2011, megaquake caused a catastrophic tsunami recorded throughout the Pacific. This paper presents an analysis of the sea-level records obtained from deep-water tsunami meters (DART and NEPTUNE). To evaluate the effect of the sea-level oscillations’ decay, a statistical analysis of observations and numerical modeling of tsunami generation and propagation have been conducted. The main goal is to uncover physical mechanisms of the tsunami wave field formation and evolution at scales up to tens of thousands of kilometers in space and a few days in time. It is shown that the tsunami lifetime is related to the wave-energy diffusion and dissipation processes. The decay time of the variance of the tsunami-generated level oscillations is about 1 day. Multiple reflections and scattering by irregularities of the bottom topography make the field of the secondary tsunami waves stochastic and incoherent: the distribution of the wave energy in the ocean reaches a statistical equilibrium in accordance with the Rayleigh-Jeans law of equipartition of the wave energy per degree of freedom. After the tsunami front has passed, the secondary-wave energy density turns out to be inversely proportional to the water depth.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号