首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Subtidal variability in the Taiwan Strait induced by combined forcing of winter monsoon and topography
Authors:Li Li  Xiaogang Guo  Enhui Liao  Yuwu Jiang
Institution:1.Third Institute of Oceanography,State Oceanic Administration,Xiamen,China;2.State Key Laboratory of Marine Environmental Science,Xiamen University,Xiamen,China;3.College of Earth, Ocean and Environment,University of Delaware,Newark,USA
Abstract:As an important channel connecting the East and South China Seas, circulations in the Taiwan Strait are strongly influenced by the East Asian monsoon and the topography of the strait, especially the Taiwan Bank (TWB), which is a remarkable topographic feature located at the southern entrance to the strait. Based on a series of pressure gauges deployed roughly 40 km offshore along the western Strait, subtidal sea-level variability under the combined impact of winter monsoon and topography was studied. The analyses show significant along-strait coherences of subtidal sea levels and their coherences with the large-scale monsoon wind for periods from 2 to 14 days. It is suggested that these fluctuations are mainly forced waves driven by the large-scale winds. In addition to the normal cross-shore wind setup, a sea-level setup in the along-strait direction is confirmed, which is induced by the combined forcing of the fluctuating winter monsoon and the blocking of the TWB. A southward current surge driven by a northerly wind event will cause a rising sea level over the TWB inducing a southward along-shore slope anomaly to the north of the TWB and a reversed slope anomaly to the south. The subtidal current through the channel to the west of the TWB is found to be influenced by the reversed slope anomalies generated via the along-shore setup.
Keywords:
本文献已被 CNKI SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号