首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Axial service limit state analysis of drilled shafts using probabilistic approach
Authors:Anil Misra  Lance A Roberts
Institution:(1) Professor of Civil Engineering, University of Missouri-Kansas City, 5100, Rockhill Road, 350H Flarsheim Hall, Kansas City, MO 64110, USA;(2) Bridge Engineer, TranSystems Corporation, 2400, Pershing Road, Suite 400, Kansas City, MO 64108, USA
Abstract:Drilled shafts are, typically, designed by considering the axial ultimate limit state. In this design methodology, the axial displacement requirements are verified once the design is completed. As an alternative, drilled shafts may be designed by considering the axial service limit state. Service limit state foundation design is more efficient when done using the load and resistance factor design (LRFD) approach. Furthermore, reliability may be rationally incorporated into the design process that utilizes the LRFD method. In this paper, we develop probabilistic approaches for axial service limit state analysis of drilled shafts. The variability of shaft-soil interface properties is modeled by lognormal probability distribution functions. The probability distributions are combined with a closed-form analytical relationship of axial load-displacement curves for drilled shafts. The closed-form analytical relationship is derived based upon the “t–z” approach. This analytical relationship is used with the Monte Carlo simulation method to obtain probabilistic load-displacement curves, which are analyzed to develop methods for determining the probability of drilled shaft failure at the service limit state. The developed method may be utilized to obtain resistance factors that can be applied to LRFD based service limit state design.
Keywords:drilled shaft  failure probability  load-displacement relation  serviceability
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号