首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Summer phytoplankton blooms in the oligotrophic North Pacific Subtropical Gyre: Historical perspective and recent observations
Authors:John E Dore  Ricardo M Letelier  Roger Lukas
Institution:a School of Ocean and Earth Science and Technology, Department of Oceanography, University of Hawaii, Honolulu, HI 96822, USA
b College of Oceanic and Atmospheric Sciences, Oregon State University, Corvallis, OR 97331-5503, USA
Abstract:The export of organic matter from the oceanic euphotic zone is a critical process in the global biogeochemical cycling of bioelements (C, N, P, Si). Much of this export occurs in the form of sinking particles, which rain down into the unlit waters of the deep sea. Classical models of oceanic production and export balance this gravitational loss of particulate bioelements with an upward flux of dissolved nutrients, and they describe reasonably well those areas of the ocean where deep winter mixing occurs. The surface waters of the North Pacific Subtropical Gyre (NPSG), however, are strongly stratified and chronically nutrient-depleted, especially in summer. Nevertheless, there is ample evidence that blooms of phytoplankton and subsequent pulses of particle export occur during the height of summer stratification in these waters, especially to the northeast of the Hawaiian Islands. These blooms impact regional bioelemental cycling and act as a food source to the deep-sea benthos. We review here numerous published observations of these events in the NPSG, and present new data collected at Station ALOHA (22.75°N, 158°W) during the first 176 cruises of the Hawaii Ocean Time-series program (1988-2005), along with results from transect cruises conducted in the region in 1996 and 2005. We suggest that the summer phytoplankton bloom can be considered a frequent, perhaps annual feature in the northeastern NPSG, and that its perceived stochastic nature is a manifestation of chronic undersampling in time and space. The bloom is typically dominated by only a few genera of large diatoms and the cyanobacterium Trichodesmium. It appears to be consistently supported by dinitrogen fixation, but the fate of the organic matter produced during the summer depends critically on the species composition of the responsible diazotrophs. We estimate that the summer bloom is responsible for up to 38% of N2 fixation and up to 18% of N-based new production annually at Station ALOHA. We hypothesize that the spatial distribution, timing and magnitude of the bloom may be determined largely by the physical and biological processes controlling new phosphorus delivery into the euphotic zone during the summer and the preceding winter.
Keywords:North Pacific Subtropical Gyre  Phytoplankton blooms  Nitrogen fixation  Particle flux  Diatoms  Nutrient cycles
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号