首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Petrology of Rhyolitic and Mixed Magma Ejecta from the 1875 Eruption of Askja, Iceland
Authors:SIGURDSSON  H; SPARKS  R S J
Institution:1Graduate School of Oceanography, University of Rhode Island Kingston, RI 02881 USA
2Dement of Earth Sciences, University of Cambridge Cambridge, CB2 3EQ, England
Abstract:Volcanic activity in Askja central volcano and its fissure swarmin 1875 occurred in response to a crustal rifting episode inIceland, resulting in up to 70 km lateral flow of magma withinthe crust, caldera collapse and a plinian eruption of acid magma(0·2 km3 dense-rock equivalent). Petrologic studies ofthe predominantly rhyolitic and crystal-poor ejecta reveal thata complex array of other liquid compositions was also present,including icelandite (0.75 per cent) and basalt (1.9 per cent),as well as leucocratic xenoliths of trondhjemite type. Mineralgeothermometers indicate that the rhyolite evolved at 990 to1010 °C and 0·5 Kb PH2O, the icelandite at 1005 to1020 °C and at fO2 10–10 atm. and the basalt at 1140to 1170 °C. A petrologic model of Askja in 1875 consists of a density-stratifiedmagma chamber with a rhyolitic upper part and a lower part offerrobasalt, with an intervening layer of icelandite. The modelcalculations show that the icelandite can be derived from ferrobasaltby 50 per cent fractional crystallization, but one-stage fractionalcrystallization models cannot account for generation of theacid magma. Simple partial or complete fusion of the field-associatedtrondhjemite xenoliths cannot produce the acid magma. Instead,a more complex fusion, hybridization and fractional crystallizationmodel is presented, which is consistent with the available petrologicevidence. This model involves large-scale fusion of pre-existingtrondhjemite intrusions or reactivation of previously consolidatedroof-rock in the magma chamber followed by hybridization ofthe acid magma with 7 to 14 per cent basaltic magma. Finally,10 to 11 per cent fractional crystallization of the dacite hybridis required to produce the observed compositional range withinthe rhyolite ejecta. The 1875 explosive eruption was causedby the ascent of tholeiitic basalt magma from depth during crustalrifting. Influx of new basalt magma in 1874–75 triggeredconvective mixing and hybridization in the compositionally zonedmagma chamber.
Keywords:
本文献已被 Oxford 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号