首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Oxygen isotope study of a Precambrian banded iron-formation,Hamersley Range,Western Australia
Authors:Richard H Becker  Robert N Clayton
Institution:Department of Chemistry, University of Chicago U.S.A.;The Enrico Fermi Institute and the Departments of Chemistry and of the Geophysical Sciences, University of Chicago, Chicago, Illinois 60637, U.S.A.
Abstract:Oxygen isotope ratios were determined for quartz, magnetite, ankerite, siderite, riebeckite, hematite and talc in samples of banded iron-formation from the Dales Gorge Member of the Brockman Iron Formation and for quartz, dolomite and calcite in samples of the Wittenoom Dolomite and Duck Creek Dolomite Formations, all from the Hamersley Range area of Western Australia. Additionally, in order to interpret the measured isotope ratios, isotopic fractionations for oxygen between quartz, siderite and magnetite and between these minerals and water as a function of temperature were calculated, using a combination of spectroscopic and thermodynamic data and constraints set by experimental determinations of the fractionations.The Dales Gorge Member was found to have undergone isotopic exchange between minerals at a temperature estimated on the basis of the isotopic fractionations to be above 270°C and probably less than 310°C, during burial metamorphism. At these temperatures quartz and the carbonates were almost completely equilibrated with one another, while hematite apparently underwent negligible exchange. Magnetite may have undergone exchange in some samples but not others, as a result of permeability variations, or it may have been as resistant to exchange as hematite. Riebeckite, and probably talc as well, were also subject to exchange, but to a lesser degree or on a smaller scale than quartz and the carbonates. Hematite formed at temperatures of 140°C or below. Magnetite appears to have formed at temperatures above 140°C, and possibly over a range of temperatures between about 180 and 300°C.The Wittenoom Dolomite and Duck Creek Dolomite samples show apparent lack of equilibrium, due to incomplete exchange or to retrograde effects. A chert from the Wittenoom Dolomite, along with two samples from the Marra Mamba Iron Formation, with δ18O values of + 24%. can be considered to set a lower limit of about ?11%. on the δ18O value of the ocean 2.2 × 109 yr ago. Internal fractionations in the Wittenoom Dolomite chert sample may be interpreted as yielding an upper limit on this oceanic δ18O value of ? 3.5%.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号