首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Latitudinal variation of wind erosion of crater ejecta deposits on Mars
Authors:Raymond E Arvidson  Marcello Coradini  A Carusi  A Coradini  M Fulchignoni  C Federico  R Funiciello  M Salomone
Institution:McDonnell Center for the Space Sciences, Department of Earth and Planetary Sciences, Washington University, St. Louis, Missouri 63130, USA;Consiglio Nazionale delle Richerche, Rome University, Italy;Istituto di Geologica, Rome University, Italy
Abstract:Wind erosion seems to be the dominant process eroding crater ejecta deposits and sorrounding materials on Mars. In the equatorial zone, ejecta deposits are eroded back by scarp recession, where scarp heights appear to be approximately equivalent to ejecta thickness. In mantled areas, escarpments develop by relatively rapid deflation of sorrounding aeolian debris, leaving the ejecta deposit (continuous deposit and zone of high density of secondary craters) standing high above sorrounding terrain. If the rate of scarp recession is controlled by the rate of aeolian undercutting of escarpment bases, then recession rates may scale roughly as the inverse with respect to scarp height. Thus, preferential preservation of ejecta deposits emplaced in thickest aeolian debris may occur. An empirical model developed for wind erosion of ejecta deposits in nonmantled areas suggests that removal of ejecta materials on the average is exceedingly slow (~10?5m/yr for 10m high scarp). On the other hand, rapid deflation of aeolian debris around crater ejecta is implied. Results suggest high differential aeolian erosion rates that are a function of both grain sizes and large-scale surface roughness. Aeolian activity on Mars has probably been dominated by rapid recycling of fine-grained debris, the bulk of which formed under more erosive conditions prevalent in the early history of Mars.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号