首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Volatile and siderophile trace elements in anorthositic rocks from Fiskenaesset. West Greenland: comparison with lunar and meteoritic analogues
Authors:John W Morgan  R Ganapathy  H Higuchi
Institution:Enrico Fermi Institute and Department of Chemistry, The University of Chicago, Chicago, Illinois 60637, U.S.A.
Abstract:Seventeen trace elements (Ag, Au, Bi, Br, Cd, Cs, Ge, Ir, Ni, Rb, Re, Sb, Se, Te, Tl, U, Zn) were analyzed by radiochemical neutron activation and 13 other elements (Ce, Co, Cr, Eu, Fe, Hf, La, Lu, Na, Sc, Sm, Tb, Yb) by instrumental neutron activation in a total of 12 rocks from the layered anorthositic complex at Fiskenaesset, West Greenland and in the plagioclase-rich unbrecciated eucrite, Serra de Magé.Garnet anorthosite 84428, which has an unusually sodic plagioclase, is spectacularly enriched in Cs, K, Rb. Tl and, to a lesser degree, Te. This appears to be the result of later metasomatism and not a reflection of fractionation trends within the anorthositic complex. For the remaining Fiskenaesset rocks, a factor analysis yields 5 principal factors for linear data for 22 elements and 6 factors for data transformed (log, 3√, √) to give approximately normal distributions. Linear correlations are controlled by high values, whereas the logarithmic transform increases the influence of the lowest values. Enrichment of several elements in chromitite 132022 underlies linear Factor 1. Six of these elements Co, Cr, Fe, Ir, Ni, Zn and possibly Re are probably hosted by chromite. In other zones of the intrusion, different fractionation trends may be more important, since in the transformed analysis these elements divide between Factor 1 (Co, Zn, Ni, Fe) and Factor 4 (Ir, Cr and also Au). Linear Factor 2 reflects the strong mutual correlation between Tl, Rb and An, the anorthite content of plagioclase. Transformed Factor 3 emphasizes the anticorrelation of Na and Sm with An. The positive correlations of Cs, U and Ge (linear Factor 3; transformed Factor 2) are largely due to their concentration in later crystallizates, but enrichment in lower zone gabbros of high An content perhaps indicates concentration in minor or accessory cumulate minerals. Flat chondrite-normalized rare earth element patterns in several anorthosites (except for a small positive Eu anomaly) suggests that the Fiskenaesset magma was relatively unfractionated.Factor 4 (linear) and Factor 5 (transformed) reflects the geochemical coherence of Se and Te. The sympathetic enrichment of Sb and Cd in 3 rocks, resulting in Factor 5 (linear) and Factor 6 (transformed) may be due to the lack of a suitable Zn sulfide host for Cd.In 3 rocks of true anorthosite composition, 8 volatile elements show rather constant abundance when normalized to Cl chondrites (mean 4.2 ± 0.4% Cl), possibly suggesting that volatile-rich material was accreted late in the Earth's formation, perhaps after core segregation. These anorthosites are higher than lunar anorthosite 15415 by a factor of 58 ± 9 in volatile elements. Siderophile and chalcophile elements are much more variable in Cl-normalized abundances in both lunar and terrestrial anorthosites, but surprisingly give somewhat similar Earth/Moon abundance ratios.Volatile elements in terrestrial oceanic basalts and lunar mare basalts are not as uniformly abundant as in anorthosites. but nevertheless yield a similar Earth/Moon ratio of 44 ± 8.Volatile elements in Serra de Magé are more abundant than in lunar anorthosites, but lower than in terrestrial equivalents, averaging (3.6 ± 0.8) × 10?3C1.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号