首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Limits on the bulk composition of the Moon
Authors:AE Ringwood
Institution:Research School of Earth Sciences, Australian National University, Canberra, Australia
Abstract:Recent hypotheses of lunar evolution hold that the Moon was extensively or completely melted and differentiated about 4.6 b.y. ago, resulting in formation of the plagioclase-rich lunar highlands underlain by a great thickness of complementary ferromagnesian cumulates. Mare basalts are interpreted as being formed by subsequent remelting of these cumulates. These hypotheses are tested experimentally in the cases of several bulk compositions which have been proposed for the Moon—those of Taylor and Jakes, Ganapathy and Anders, Wänke and co-workers, and Anderson. An extensive experimental investigation of melting equilibria displayed by the Taylor-Jakes model at high pressures and temperatures is presented. This permits a quantitative evaluation of the manner in which a model Moon with this composition would crystallize and differentiate under conditions of (i) total melting throughout, and (ii) total melting only of an outer shell a few hundred kilometers thick. A detailed study is made of the capacity of the cumulates underlying the crust in these models to produce mare basalts by a second stage of partial melting. A wide range of experimentally based arguments is presented, showing that for both cases, partial melting of such cumulates would produce magmas with compositions quite unlike those of mare basalts. In order to minimize these difficulties, bulk lunar compositions containing substantially smaller abundances of involatile components (e.g. CaO, Al2O3, TiO2) relative to major components of intermediate volatility (e.g. MgO, SiO2, FeO) than are specified in the Taylor-Jakes model, appear to be required. Other bulk lunar composition models proposed by Ganapathy and Anders, Wänke and co-workers and Anderson, were similarly tested in the light of experimental data. All of these are far too rich in (Ca and Al) relative to (Mg + Si + Fe) to yield, after melting and differentiation, cumulates capable of being parental to mare basalts. Moreover these compositions, whdn melted and differentiated, appear incapable of matching the composition of the pyroxene component of the lunar highland crust.A brief discussion of the petrogenesis of mare basakts is presented. The most promising model is one in which only the outer few hundred kilometers of the Moon were melted and differentiated around 4.6 b.y. ago. Continued radioactive heating of the deep undifferentiated lunar interior provided a second generation of primitive magmas up to 1.5 b.y. after the early melting and differentiation. These primitive magmas participated in assimilative interactions with late-stage differentiates formed near the crust-mantle boundary during the 4.6 b.y. differentiation. These interactions might explain some trace element and isotopic characteristics of mare basalts. The model possesses some attractive characteristics relating to the thermal evolution of the Moon.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号