首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Oil shales,evaporites and ore deposits
Authors:Hans P Eugster
Institution:Department of Earth and Planetary Sciences, The Johns Hopkins University, Baltimore, Maryland 21218 USA
Abstract:The relationships between oil shales, evaporites and sedimentary ore deposits can be classified in terms of stratigraphic and geochemical coherence. Oil shale and black shale deposition commonly follows continental red beds and is in turn followed by evaporite deposition. This transgressive-regressive sequence represents an orderly succession of depositional environments in space and time and results in stratigraphic coherence. The amount of organic carbon of a sediment depends on productivity and preservation, both of which are enhanced by saline environments. Work on Great Salt Lake. Utah, allows us to estimate that only 5% of TOC originally deposited is preserved. Inorganic carbonate production is similar to TOC production, but preservation is much higher.Oil shales and black shales commonly are enriched in heavy metals through scavenging by biogenic particles and complexation by organic matter. Ore deposits are formed from such rocks through secondary enrichment processes, establishing a geochemical coherence between oil shales and ore deposits. The Permian Kupferschiefer of N. Europe is used as an example to define a Kupferschiefer type (KST) deposit. Here oxygenated brines in contact with red beds become acidified through mineral precipitation and acquire metals by dissolving oxide coatings. Oxidation of the black shale leads to further acid production and metal acquisition and eventually to sulfide deposition along a reducing front. In order to form ore bodies, the stratigraphic coherence of the red bed-black shale-evaporite succession must be joined by the geochemical coherence of the ore body-evaporite-black shale association. The Cretaceous Cu-Zn deposits of Angola, the Zambian Copperbelt as well as the Creta, Oklahoma, deposits are other KST examples. In the Zambian Copperbelt, evaporites are indicated by the carbonate lenticles thought to be pseudomorphs after gypsum-anhydrite nodules. MVT deposits are also deposited by acid brines, but at more elevated temperatures and with carbonates as principal host rocks. The Pine Point deposits are cited for their close association with evaporites.Alkaline, metal-rich brines are postulated for the HYC deposit of McArthur River, Australia. Such brines are known from the Green River Formation and deposits formed from such brines constitute the GRT class. They can be recognized by the presence of Magadi-type cherts and zeolite-analcime-K-spar tuffs. The Cu-Co ore bodies of Outokumpu, Finland, might also belong to this type. A new classification of sedimentary ore deposits is proposed, based on their geochemical environment. KST and MVT are formed from acid ore fluids, while GRT and CT (Creede type) are derived from basic ore fluids. pH of the fluids is best evaluated not from the ores themselves, but from their effect on the host-rocks.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号