首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Accretionary rims on inclusions in the Allende meteorite
Authors:Glenn J MacPherson  Akihiko Hashimoto  Lawrence Grossman
Institution:Department of the Geophysical Sciences, University of Chicago, 5734 S. Ellis Ave., Chicago, IL 60637 USA
Abstract:Many inclusions in Allende, particularly those with irregular shapes, are surrounded by a sequence of thin layers which differ from one another in texture, mineralogy and mineral-chemistry. The layer underlying all others contains either: IA, pyroxene needles + olivine + clumps of hedenbergite and andradite; IB, olivine doughnuts; or IC, rectangular olivine crystals. The next layer outward, II, contains tiny (<5 μm) olivine plates and Layer III large (5–10 μm) olivine laths. The final layer, IV, occurs as clumps of andradite + hedenbergite surrounded by magnesium-rich pyroxene needles. It separates Layer III from the Allende matrix which is more poorly sorted and more sulfide-rich than Layer III. Nepheline and iron sulfide are common constituents of most layers, the latter being particularly fine-grained and abundant in Layer II. Although not every layer is present on every inclusion, the sequence of layers is constant. Evidence that the rims are accretionary aggregates includes the presence of highly disequilibrium mineral assemblages and the fact that they are highly porous masses consisting of many euhedral crystals with few intergrowths. In addition, the layers are thickest in topographic hollows on the surfaces of inclusions and the inner layers are absent or discontinuous beyond such irregularities, suggesting that the probability of accretion of crystals was low initially, except in pockets, and became greater later, after a soft cushion of accreted condensate crystals had already formed. Separation of assemblages of different mineralogy, mineral-chemistry and texture into different rim layers seems best explained by nebular models in which long, slow cooling histories allow differentiation during condensation by grain/gas separation processes.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号