首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The redox chemistry of Pu(V)O2+ interaction with common mineral surfaces in dilute solutions and seawater
Authors:Wendy L Keeney-kennicutt  John W Morse
Institution:Department of Oceanography, Texas A&M University, College Station, Texas 77843 USA
Abstract:It has long been recognized that the Pu4+ ion can be readily adsorbed on solid surfaces, but it has been assumed that the generally more abundant Pu(V)O2+ ion should have little affinity for surfaces. Our results indicate that Pu(V)O2+ can be adsorbed from dilute solutions and seawater on goethite, aragonite, calcite, and δ-MnO2. Adsorption on δ-MnO2 is severely depressed in seawater, probably as a result of site competition with seawater cations.The sorption behavior of PuO2+ is influenced by oxidation-reduction reactions occurring on the mineral surfaces. Adsorption on δ-MnO2 results in oxidation of adsorbed Pu(IV) and Pu(V) to Pu(VI). However, adsorption on goethite results in a reaction in which Pu(IV) and Pu(VI) are formed on the mineral surface. The Pu(VI) is slowly reduced to Pu(IV), leaving Pu(IV) as the dominant surface Pu species. This reaction can be photochemically catalyzed. PuO2+ adsorbed on carbonate minerals behaves similarly to Np(V)O2+ and undergoes little change in oxidation state after adsorption.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号