首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Holocene coastal uplift in the western Pacific Rim in the context of late Quaternary uplift
Authors:Yoko Ota  Masaru Yamaguchi  
Institution:a Yokohama National University, Tokiwadai, Hodogayaku, Yokohama, Japan;b NHK, Japan Broadcasting Corporation, Japan
Abstract:This paper reviews recent studies of Holocene coastal uplift in tectonically active areas near the plate boundaries of the western Pacific Rim. Emergent Holocene terraces exist along the coast of North Island of New Zealand, the Huon Peninsula of Papua New Guinea, the Japanese Islands, and Taiwan. These terraces have several features in common. All comprise series of subdivided terraces. The highest terrace is a constructional terrace, underlain by estuarine or marine deposits, and the lower terraces are erosional, cutting into transgressive deposits or bedrock. The highest terrace records the culmination of Holocene sea-level rise at ca. 6–6.5 ka BP. Lower terraces were coseismically uplifted. Repeated major earthquakes have usually occurred at ka intervals and meter-scale uplift. The maximum uplift rate and number of terraces are surprisingly similar, about 4 m/ka and seven to four major steps in North Island, Huon Peninsula, and Japan. Taiwan, especially along the east coast of the Coastal Range, is different, reaching a maximum uplift rate of 15 m/ka with 10 subdivided steps. They record a very rapid uplift. Comparison between short-term (Holocene) and long-term since the last interglacial maximum (sub-stage 5e) uplift rates demonstrates that a steady uplift rate (Huon Peninsula) or accelerated uplift toward the present (several areas of Japan and North Island) has continued at least since isotope sub-stage 5e. Rapid uplift in eastern Taiwan probably started only in the early Holocene, judging from the absence of any older marine terraces. Most of the causative faults for the coastal uplift may be offshore reverse faults, branched from the main plate boundary fault, but some of them are onshore faults, which deformed progressively with time.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号