首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evidence for common breakup events of the acapulcoites‐lodranites and chondrites
Authors:Dario TERRIBILINI  Otto EUGSTER  Gregory F HERZOG  Christoph SCHNABEL
Abstract:Abstract— Acapulcoites and lodranites are believed to originate on a common parent body and to represent some of the earliest events in the differentiation of the chondritic asteroids. We have conducted isotopic studies of the noble gases He, Ne, Ar, Kr, and Xe, and determinations of the concentrations of the major elements and of the radionuclides 10Be, 26Al, and 36Cl in an attempt to constrain the cosmic‐ray exposure history of two members of the acapulcoite‐lodranite clan recovered in Antarctica: Frontier Mountain (FRO) 95029 and Graves Nunataks (GRA) 95209. From cosmic‐ray‐produced 3He, 21Ne, and 38Ar and appropriate production rates, we derive parent‐body breakup times of 4.59 ± 0.60 and 6.82 ± 0.60 Ma for FOR 95029 and GRA 95209, respectively. These times are consistent with those obtained from the pairs 10Be‐21Ne and 26Al‐21Ne; whereas the times inferred from the pair 36Cl‐36Ar are slightly longer, perhaps because the 36Cl activities decreased as a result of decay on Earth. Terrestrial ages up to ~50 ka for the two meteorites are consistent with the measured 36Cl activities of the metal phases. All acapulcoites and lodranites dated until now show cosmic‐ray exposure ages in the range of 4–10 Ma. This is the same range as that found for the major exposure age cluster of the H chondrites. As a common parent body is improbable on the basis of the O‐isotopic systematics, a common set of impactors might have affected the asteroid belt 4–10 Ma ago.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号