首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Crystallization of the basaltic shergottites: Insights from crystal size distribution (CSD) analysis of pyroxenes
Authors:RACHEL C F LENTZE  Harry Y McSWEEN
Abstract:Abstract— Quantitative petrographic analysis, using the crystal size distribution (CSD) method, provides a novel approach for examining the crystallization histories of basaltic shergottites. Grain number densities at different sizes are plotted against grain size, and the resulting curve relates to the geologic processes involved with the crystallization of the grain population. Most basaltic shergottites are dominated by pigeonite and augite; and because plagioclase is primarily interstitial, and therefore constrained in its growth by the surrounding pyroxenes, we limited our size measurements to the pyroxene phases. The groundmasses of Elephant Moraine (EET) A79001 lithology A and Dar al Gani (DaG) 476 are fine grained with cumulus pyroxene and interstitial plagioclase glass. Their simple linear CSD plots record a single stage of pyroxene crystallization under steady‐state conditions of continuous nucleation and growth. The textures of Queen Alexandra Range (QUE) 94201 and EETA79001 lithology B are quite different from the other shergottites, with intergrown pyroxene and plagioclase. Likewise, their CSD plots are also distinct, with curved trends that suggest a lack of large grains, most likely because of interference between simultaneously growing silicate phases. However, the CSD plot shapes are smooth, also implying a single stage of growth. Shergotty and Zagami, with coarser cumulus textures, display CSD plots that are generally linear over most grain sizes. This implies that conditions of nucleation and growth were dominant during formation of the pyroxene populations. Both plots, however, also display kinks, implying multiple stages of growth. A similar kink is also visible in a CSD plot of only the Mg‐rich cores of Shergotty pyroxenes, which suggests the feature represents changes in conditions during core crystallization, rather than an event coincident with the change in composition to the Fe‐rich rims. The plot may be interpreted as representing two stages of core growth with an intervening short hiatus of nucleation, with continued crystallization associated with ascent of the magma. Eruption onto the surface probably triggered the compositional change to Fe‐rich rims. The CSD analysis of products from a controlled crystallization study agree with experimental and petrologic estimates that cooling rates for Zagami were on the order of a few tenths of a degree per hour. Growth rates derived from these cooling rates suggest crystallization of Shergotty and Zagami pyroxenes occurred over a period of a few weeks to months.
Keywords:
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号