首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The nearshore current along a high-rainfall,trade-wind coast-Nicaragua
Authors:Stephen P Murray  Myron Young
Institution:1. Coastal Studies Institute, Louisiana State University, Baton Rouge, Louisiana 70803, USA;2. Center for Wetland Resources, Louisiana State University, Baton Rouge, Louisiana 70803, USA
Abstract:Runoff from abundant rainfall on the watersheds along the east coast of Nicaragua results in a well-defined nearshore current, extending 20–40 km out from the coast. Important terms in the controlling dynamical balance are the Coriolis forces, and eddy frictional forces. Calculations of the diabathic surface slope 0(10?5) show a smooth setup of 4–5 cm from the outer edge of the current to the shoreline. A longshore surface slope of 0(10?8) appears to be set up by the longshore wind stress, and further computations allow an estimate of ~ 6 gr cm?1 s?1 for the dynamic eddy viscosity. An analytical expression including diabathic surface slope and density gradient, parabathic surface slope, wind stress, and quadratic bottom friction reproduces the salient observed features of the nearshore current. These include the pronounced maximum in the parabathic (along-shelf) current about 10 km off the coast, a complex diabathic velocity structure, and a shelf countercurrent just seaward of the outer edge. Further calculations suggest that the dominant driving arises from the freshwater-induced density gradients, accounting for upward of 80% of the flow velocity. As suggested by Royer (1982), the prevailing trade wind exerts an onshore wind stress that serves the important role of maintaining the integrity of the density gradients via the convergence of a surface Ekman layer toward the coast.
Keywords:nearshore current system  dynamic balance  wind stress  friction  pressure gradients  Nicaragua
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号