首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Effects of sand burial on survival and growth of Artemisia halodendron and its physiological response
Authors:HaLin Zhao  Hao Qu  RuiLian Zhou  JianYing Yun and Jin Li
Institution:1. Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, Gansu 730000, China
2. Faculty of Life Sciences, Ludong University, Yantai, Shandong 264025, China
Abstract:There is a great deal of literature on the effects of sand burial upon the survival and growth of desert plants, but the physiological adaption mechanisms of desert plants to sand burial have as yet rarely been studied. Artemisia halodendron is widely distributed in the semi-arid deserts of China and is a dominant species in semi-moving dune vegetation. The growth and physiological properties of A. halodendron seedlings under different sand burial depths were studied in 2010 and 2011 in the Horqin Sand Land, Inner Mongolia, to better understand the ability and physiological mechanism by which desert plants withstand sand burial. The results showed that A. halodendron as a prammophyte species had a stronger ability to withstand sand burial compared to non-prammophytes, with some plants still surviving even if buried to a depth reaching 225% of seedling height. Although seedling growth was inhibited significantly once the depth of sand burial reached 50% of the seedling height, seedling survival did not decrease significantly until the burial depth exceeded 100% of the seedling height. Sand burial did not result in significant water stress or MDA (Malondialdehyde) accumulation in the seedlings, but membrane permeability increased significantly when the burial depth exceeded 100% of the seedling height. After being subjected to sand burial stress, POD (Peroxidase) activity and proline content increased significantly, but SOD (Superoxide Dismutase) and POD activities and soluble sugar content did not. The primary mechanism resulting in increased mortality and growth inhibition were that cell membranes were damaged and photosynthetic area decreased when subjected to the severe stress of sand burial, while proline and POD played key roles in osmotic adjustment and protecting cell membranes from damage, respectively.
Keywords:desert shrub  sand burial  survival rate  growth  physiological response
本文献已被 CNKI 万方数据 等数据库收录!
点击此处可从《寒旱区科学》浏览原始摘要信息
点击此处可从《寒旱区科学》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号