首页 | 本学科首页   官方微博 | 高级检索  
     检索      

Geochemistry and mineralogy of the Late Permian coals from the Songzao Coalfield, Chongqing, southwestern China
作者单位:DAI ShiFeng(State Key Laboratory of Coal Resources and Safe Mining (China University of Mining and Technology), Beijing 100083, China;Department of Resources and Earth Science, China University of Mining and Technology, Beijing 100083, China) ; ZHOU YiPing(Kunming Research Institute of Coal Science, Kunming 650041, China) ; REN DeYi(State Key Laboratory of Coal Resources and Safe Mining (China University of Mining and Technology), Beijing 100083, China) ; WANG XiBo(State Key Laboratory of Coal Resources and Safe Mining (China University of Mining and Technology), Beijing 100083, China;Department of Resources and Earth Science, China University of Mining and Technology, Beijing 100083, China) ; LI Dan(State Key Laboratory of Coal Resources and Safe Mining (China University of Mining and Technology), Beijing 100083, China;Department of Resources and Earth Science, China University of Mining and Technology, Beijing 100083, China) ; ZHAO Lei(State Key Laboratory of Coal Resources and Safe Mining (China University of Mining and Technology), Beijing 100083, China;Department of Resources and Earth Science, China University of Mining and Technology, Beijing 100083, China) ;
基金项目:国家重点基础研究发展计划(973计划);国家自然科学基金;教育部全国优秀博士学位论文作者专项基金
摘    要:Mineralogy and geochemistry of the four main workable coal seams (No.6, No.7, No.8, and No.11) of Late Permian age from the Songzao Coalfield, Chongqing, Southwest China, were examined using in- ductively coupled plasma-mass spectrometry (ICP-MS), X-ray fluorescence spectrometry (XRF), cold-vapor absorption spectrometry (CV-AAS), ion-selective electrode (ISE), scanning electron mi- croscopy equipped with an energy-dispersive X-ray spectrometer (SEM-EDX), and X-ray diffraction analysis (XRD). The results showed that the main workable No.8 Coal that accounts for about 60% of the total coal reserves in the Songzao Coalfield was not enriched in hazardous trace elements. The No.11 Coal has high concentrations of alkaline elements, Be (9.14 μg/g), Sc (12.9 μg/g), Ti (9508 μg/g), Mn (397 μg/g), Co (23.7 μg/g), Cu (108 μg/g), Zn (123 μg/g), Ga (32 μg/g), Zr (1304 μg/g), Nb (169 μg/g), Hf (32.7 μg/g), Ta (11.4 μg/g), W (24.8 μg/g), Hg (0.28 μg/g), Pb (28.1 μg/g), Th (24.1 μg/g), and rare earth elements (509.62 μg/g). The concentration of Nb and Ta in the No. 11 Coal is higher than the industrial grade, and their potential utilization should be further studied. Besides pyrite, quartz, calcite, and clay minerals, trace minerals including chalcopyrite, marcasite, siderite, albite, mixed-layer clay minerals of illite and smectite, monazite, apatite, anatase, chlorite, and gypsum were found in the No.11 Coal. It should be noted that alabandite of hydrothermal origin and anatase occurring as cement were identi- fied in coal. In addition, the clayey microbands derived from alkaline volcanic ashes were identified in the coal. The dominant compositions of these clayey microbands were mixed-layer clay minerals of illite and smectite, which were interlayered with organic bands. The modes of occurrence of alkaline volcanic ash bands indicate that the volcanic activities were characterized by the multiple eruptions, short time interval and small scale for each eruption during peat accumulation. The alkaline volcanic ashes were the dominant factors for the enrichment of alkaline elements, Nb, Ta, Zr, Hf, and rare earth elements, and the sulfide minerals are the main carriers of Ga, Cu, and Hg in the No. 11 Coal.


Geochemistry and mineralogy of the Late Permian coals from the Songzao Coalfield, Chongqing,southwestern China
Authors:DAI ShiFeng  ZHOU YiPing  REN DeYi  WANG XiBo  LI Dan  ZHAO Lei
Abstract:Mineralogy and geochemistry of the four main workable coal seams (No.6, No.7, No.8, and No.11) of Late Permian age from the Songzao Coalfield, Chongqing, Southwest China, were examined using inductively coupled plasma-mass spectrometry (ICP-MS), X-ray fluorescence spectrometry (XRF),cold-vapor absorption spectrometry (CV-AAS), ion-selective electrode (ISE), scanning electron microscopy equipped with an energy-dispersive X-ray spectrometer (SEM-EDX), and X-ray diffraction analysis (XRD). The results showed that the main workable No.8 Coal that accounts for about 60% of the total coal reserves in the Songzao Coalfield was not enriched in hazardous trace elements. The No.11 Coal has high concentrations of alkaline elements, Be (9.14 μg/g), SC (12.9 μg/g), Ti (9508 μg/g),Mn (397 μg/g), Co (23.7 μg/g), Cu (108 μg/g), Zn (123 μg/g), Ga (32 μg/g), Zr (1304 μg/g), Nb (169 μg/g), Hf (32.7 μg/g), Ta (11.4 μg/g), W (24.8 μg/g), Hg (0.28 μg/g), Pb (28.1 μg/g), Th (24.1 μg/g), and rare earth elements (509.62 μg/g). The concentration of Nb and Ta in the No. 11 Coal is higher than the industrial grade, and their potential utilization should be further studied. Besides pyrite, quartz, calcite, and clay minerals, trace minerals including chalcopyrite, marcasite, siderite, albite, mixed-layer clay minerals of illite and smectite, monazite, apatite, anatase, chlorite, and gypsum were found in the No.11 Coal. It should be noted that alabandite of hydrothermal origin and anatase occurring as cement were identified in coal. In addition, the clayey microbands derived from alkaline volcanic ashes were identified in the coal. The dominant compositions of these clayey microbands were mixed-layer clay minerals of illite and smectite, which were interlayered with organic bands. The modes of occurrence of alkaline volcanic ash bands indicate that the volcanic activities were characterized by the multiple eruptions,short time interval and small scale for each eruption during peat accumulation. The alkaline volcanic ashes were the dominant factors for the enrichment of alkaline elements, Nb, Ta, Zr, Hf, and rare earth elements, and the sulfide minerals are the main carriers of Ga, Cu, and Hg in the No. 11 Coal.
Keywords:coal  trace elements  mineral  alkaline volcanic ash  Late Permian period  Songzao Coalfield
本文献已被 万方数据 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号