首页 | 本学科首页   官方微博 | 高级检索  
     检索      


On the detectability of distant Compton-thick obscured quasars
Authors:AC Fabian  RJ Wilman  CS Crawford
Institution:1Institute of Astronomy, Madingley Road, Cambridge CB3 0HA;2Sterrewacht Leiden, Postbus 9513, 2300 RA Leiden, the Netherlands
Abstract:Chandra and XMM–Newton have resolved the     X-ray background (XRB) into point sources. Many of the fainter sources are obscured active galactic nuclei (AGN) with column densities in the range of     , some of which have quasar-like luminosities. According to obscuration models, the XRB above 8 keV is dominated by emission from Compton-thick AGN, with column densities exceeding     . Here, we consider whether Compton-thick quasars are detectable by Chandra and XMM–Newton by their direct (i.e. not scattered) X-ray emission. Detectability is optimized if the objects individually have a high luminosity and high redshift, so that the direct emission has a significant flux in the observed band. Using a simple galaxy formation model incorporating accreting black holes, in which quasars build most of their mass in a Compton-thick manner before expelling the obscuring matter, we predict that moderately deep 100-ks Chandra and XMM–Newton exposures may contain a handful of detectable Compton-thick quasars. Deep Ms or more Chandra images should contain     distant, optically faint, Compton-thick sources. In passing we show that radiation pressure can be as effective in expelling the obscuring gas as quasars winds, and yields a black hole mass proportional to the velocity dispersion of the host bulge to the fourth power.
Keywords:galaxies: active  quasars: general  galaxies: Seyfert  infrared: galaxies  X-rays: general
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号