首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Hypersalinity During Regional Drought Drives Mass Mortality of the Seagrass <Emphasis Type="Italic">Syringodium filiforme</Emphasis> in a Subtropical Lagoon
Authors:Sara S Wilson  Kenneth H Dunton
Institution:1.University of Texas Marine Science Institute,Port Aransas,USA;2.Marine Education and Research Center, Institute for Water and Environment,Florida International University,Miami,USA
Abstract:Seagrasses are sensitive to local environmental conditions such as salinity, the underwater light environment, and nutrient availability. To characterize seagrass coverage and condition, as well as to relate changes in community structure to local environmental and hydrologic conditions, we monitored seagrass communities in the Upper Laguna Madre (ULM), Texas annually from 2011 to 2015. In 2011 and 2012, the lagoon was dominated primarily by Halodule wrightii, with mixed meadows of H. wrightii and Syringodium filiforme located in the northwest of our study area. By 2013, the expansive S. filiforme meadows had disappeared and the species was restricted to the northernmost reaches of the lagoon. The S. filiforme mortality occurred following an extended period of extremely high salinity (salinities 50–70) during a regional drought. Continuous measurements of underwater photosynthetically active radiation and stable carbon isotopic signatures of seagrass blade tissues did not suggest light limitation, and H. wrightii N/P molar ratios near 30:1 were not indicative of nutrient limitation. Based on the absence of strong evidence for light or nutrient limitation, along with the known tolerance of H. wrightii for higher salinities, we conclude that hypersalinity driven by regional drought was likely the major driver behind the observed S. filiforme mortality. With a substantial portion of the global seagrass distribution threatened by drought in the next 50 years, the increased frequency of hypersaline conditions is likely to exacerbate stress in seagrass systems already vulnerable to the effects of rising water temperatures, eutrophication, and sea level rise.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号