首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Oxygen fugacity and geochemical variations in the martian basalts: implications for martian basalt petrogenesis and the oxidation state of the upper mantle of Mars
Authors:Christopher DK Herd  Lars E BorgJohn H Jones  James J Papike
Institution:1 Institute of Meteoritics, Department of Earth and Planetary Sciences, University of New Mexico, Albuquerque, NM 87131-1126, USA
b Astromaterials Research Office, SR, NASA Lyndon B. Johnson Space Center, Houston, TX 77058, USA
Abstract:The oxygen fugacity of the Dar al Gani 476 martian basalt is determined to be quartz-fayalite-magnetite (QFM) −2.3 ± 0.4 through analysis of olivine, low-Ca pyroxene, and Cr-spinel and is in good agreement with revised results from Fe-Ti oxides that yield QFM −2.5 ± 0.7. This estimate falls within the range of oxygen fugacity for the other martian basalts, QFM −3 to QFM −1. Oxygen fugacity in martian basalts correlates with 87Sr/86Sr, 143Nd/144Nd, and La/Yb ratios, indicating that the mantle source of the basalts is reduced and that assimilation of crust-like material controls the oxygen fugacity. This allows constraints to be placed on the oxidation state of the martian mantle and on the nature of assimilated crustal material. The assimilated material may be the product of early and extensive hydrothermal alteration of the martian crust, or it may be amphibole- or phlogopite-bearing basaltic rock within the crust. In either case, water may play a significant role in the oxidation of basaltic magmas on Mars, although it may be secondary to assimilation of ferric iron-rich material.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号