首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The anaerobic degradation of organic matter in Danish coastal sediments: iron reduction, manganese reduction, and sulfate reduction
Authors:Canfield D E  Thamdrup B  Hansen J W
Institution:School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta 30332-1340.
Abstract:We used a combination of porewater and solid phase analysis, as well as a series of sediment incubations, to quantify organic carbon oxidation by dissimilatory Fe reduction, Mn reduction, and sulfate reduction, in sediments from the Skagerrak (located off the northeast coast of Jutland, Denmark). In the deep portion of the basin, surface Mn enrichments reached 3.5 wt%, and Mn reduction was the only important anaerobic carbon oxidation process in the upper 10 cm of the sediment. In the less Mn-rich sediments from intermediate depths in the basin, Fe reduction ranged from somewhat less, to far more important than sulfate reduction. Most of the Mn reduction in these sediments may have been coupled to the oxidation of acid volatile sulfides (AVS), rather than to dissimilatory reduction. High rates of metal oxide reduction at all sites were driven by active recycling of both Fe and Mn, encouraged by bioturbation. Recycling was so rapid that the residence time of Fe and Mn oxides, with respect to reduction, ranged from 70-250 days. These results require that, on average, an atom of Fe or Mn is oxidized and reduced between 100-300 times before ultimate burial into the sediment. We observed that dissolved Mn2+ was completely removed onto fully oxidized Mn oxides until the oxidation level of the oxides was reduced to about 3.8, presumably reflecting the saturation by Mn2+ of highly reactive surface adsorption sites. Fully oxidized Mn oxides in sediments, then, may act as a cap preventing Mn2+ escape. We speculate that in shallow sediments of the Skagerrak, surface Mn oxides are present in a somewhat reduced oxidation level (< 3.8) allowing Mn2+ to escape, and perhaps providing the Mn2+ which enriches sediments of the deep basin.
Keywords:
本文献已被 PubMed 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号