首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Volcanic soil formation in Calabria (southern Italy): The Cecita Lake geosol in the late Quaternary geomorphological evolution of the Sila uplands
Authors:Fabio Scarciglia  Rosanna De Rosa  Giuseppe Vecchio  Carmine Apollaro  Gaetano Robustelli  Filippo Terrasi
Institution:1. Dipartimento di Scienze della Terra, Università della Calabria, Via P. Bucci Cubo 15B, 87036 Arcavacata di Rende (CS), Italy;2. Istituto Sperimentale per lo Studio e la Difesa del Suolo (ISSDS); 88063 Catanzaro Lido (CZ), Italy;3. Dipartimento di Scienze Ambientali, Seconda Università di Napoli, Via Vivaldi 43, 81100 Caserta (CE), Italy
Abstract:This paper focuses on the main morphological, physical, chemical and mineralogical features of an andic-like soil, widely outcropping in the Sila upland plateau of Calabria (southern Italy), and its potential role in tephrostratigraphy. A multidisciplinary and multiscale approach allowed identification of this soil as a “masked” distal archive of volcanic products, developed on granite rocks and sediments with a coeval pyroclastic input during pedogenesis. The study demonstrates that the contribution of volcanic parent materials can be successfully hypothesized and assessed even in the absence, limited extent or poor preservation of primary eruptive products. The soil has an Andisol-like appearance, despite laboratory data that do not match the entire suite of diagnostic criteria for the Andisol taxonomic order. Geomorphological, stratigraphic and pedologic results, coupled with tephrostratigraphic and radiometric data, concur to suggest a Late Pleistocene(?) to Holocene age of the Andisol-like soil. In particular, the rhyolitic chemical composition of small-sized glass fragments (identified by SEM–EDS analyses) indicates soil genesis contributed by volcanic ash, probably sourced from Aeolian Arc explosive activity spanning the last 30 ka. Accordingly, the evidence of limited relict clay illuviation and the specific type of pedogenesis allowing the development of andic properties (in turn related to the neoformation of clay minerals from the weathering of volcanic glass) are consistent with a climatic shift from a seasonally-contrasted to a constantly humid pedoenvironment. This change can be ascribed to the Lateglacial(?) or Early–Middle Holocene to Late Holocene transition. Calibrated AMS 14C dates performed on charcoal fragments sampled from three representative soil profiles, provide Late Holocene ages (3136 ± 19, 343 ± 16 and 92 ± 24 yr BP), in accord with archaeological finds. On the basis of the consistent stratigraphic position, lateral continuity and wide extent, the soil can be considered a good pedostratigraphic marker in the Sila highlands and is informally defined as the “Cecita Lake geosol”. It supplies valuable time constraints for the underlying (occasionally overlying) deposits and/or soils. Moreover, it allows regional-scale morphostratigraphic correlations and detailed reconstruction of Late Pleistocene–Holocene geomorphic events in Calabria, a very suitable region for distal tephra deposition in the central Mediterranean peri-volcanic area. The effects of high-energy volcanic eruptions are interfingered with or superimposed by other geomorphic processes and climatic or anthropogenic signals.
Keywords:volcanic soils  andic properties  pedostratigraphy  AMS radiocarbon dating  late Quaternary
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号