首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Astrophysical Implications of the Recent Shocked Deuterium Experiments
Authors:D Saumon  T Guillot
Institution:1. Applied Physics Division, Los Alamos National Laboratory, MS F699, Los Alamos, NM, 87545, USA
2. Observatoire de la C?te d’Azur, BP 4229, 06304, Nice Cedex 04, France
Abstract:In the last few years, deuterium has been the focus of a high level of laboratory activity that was sparked by a disagreement on the experimental value of the maximum compression along the Hugoniot. Astrophysically, the uncertainty in the EOS of hydrogen is most consequential in models of the interiors of Jupiter and Saturn since a significant fraction of their mass falls in the region where the EOS uncertainty is largest. We present a study of the range of interior structures allowed by the shock-compression experiments on deuterium and constrained by astrophysical observations of the two planets. We find that the EOS uncertainty must be reduced to less than 3% along the planet’s isentrope to get good interior models of Jupiter. These models provide values for the mass of a core of heavy elements (other than H and He) and the total mass of heavy elements in these planets. The amount and distribution of heavy elements are quite sensitive to the EOS of hydrogen and constitute important clues to their formation process.
Keywords:equation of state  hydrogen  deuterium  Jupiter  Saturn
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号