首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Geometry and growth of an inner rift fault pattern: the Kino Sogo Fault Belt, Turkana Rift (North Kenya)
Authors:William Vtel  Bernard Le Gall  John J Walsh
Institution:aUMR-CNRS 6538 ‘Domaines Océaniques’, Institut Universitaire Européen de la Mer, Place Nicolas Copernic, 29280 Plouzané, France;bFault Analysis Group, Department of Geology, University College Dublin, Belfield, Dublin 4, Ireland
Abstract:A quantitative analysis is presented of the scaling properties of faults within the exceptionally well-exposed Kino Sogo Fault Belt (KSFB) from the eastern part of the 200-km-wide Turkana rift, Northern Kenya. The KSFB comprises a series of horsts and grabens within an arcuate 40-km-wide zone that dissects Miocene–Pliocene lavas overlying an earlier asymmetric fault block. The fault belt is 150 km long and is bounded to the north and south by transverse (N50°E and N140°E) fault zones. An unusual feature of the fault system is that it accommodates very low strains (<1%) and since it is no older than 3 Ma, it could be characterised by extension rates and strain rates that are as low as 0.1 mm/yr and 10−16 s−1, respectively. Despite its immaturity, the fault system comprises segmented fault arrays with lengths of up to 40 km, with individual fault segments ranging up to 9 km in length. Fault length distributions subscribe to a negative exponential scaling law, as opposed to the power law scaling typical of other fault systems. The relatively long faults and segments are, however, characterised by maximum throws of no more than 100 m, providing displacement/length ratios that are significantly below those of other fault systems. The under-displaced nature of the fault system is attributed to early stage rapid fault propagation possibly arising from reactivation of earlier underlying basement fabrics/faults or magmatic-related fractures. Combined with the structural control exercised by pre-existing transverse structures, the KSFB demonstrates the strong influence of older structures on rift fault system growth and the relatively rapid development of under-displaced fault geometries at low strains.
Keywords:Rift extension  Recent grid faults  Fault growth model  Remote sensing  Kino Sogo Fault Belt  Turkana Rift  Kenya
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号