首页 | 本学科首页   官方微博 | 高级检索  
     检索      

双相介质中地震波衰减的物理机制
引用本文:李子顺.双相介质中地震波衰减的物理机制[J].应用地球物理,2008,5(1):9-17.
作者姓名:李子顺
作者单位:Exploration & Development Research Institute of Daqing Oil Field Company, Ltd., Daqing 163712, China.
摘    要:High-frequency seismic attenuation is conventionally attributed to anelastic absorption. In this paper, I present three studies on high-frequency seismic attenuation and propose that the physical mechanism results from the interference of elastic microscopic multiple scattering waves. First, I propose a new theory on wave propagation in a two-phase medium which is based on the concept that the basic unit for wave propagation is a nano- mass point. As a result of the elasticity variations of pore fluid and rock framework, micro multiple scattering waves would emerge at the wavelength of the seismic waves passing through the two-phase medium and their interference and overlap would generate high- frequency seismic attenuation. Second, I present a study of the frequency response of seismic transmitted waves by modeling thin-layers with thicknesses no larger than pore diameters. Results indicate that high-frequency seismic waves attenuate slightly in a near-surface water zone but decay significantly in a near-surface gas zone. Third, I analyze the seismic attenuation characteristics in near-surface water and gas zones using dual-well shots in the Songliao Basin, and demonstrate that the high-frequency seismic waves attenuate slightly in water zones but in gas zones the 160-1600 Hz propagating waves decay significantly. The seismic attenuation characteristics from field observations coincide with the modeling results. Conclusions drawn from these studies theoretically support seismic attenuation recovery.

关 键 词:介质  地震衰减  波传播  散射波
修稿时间:2007年10月31

Physical mechanism of seismic attenuation in a two-phase medium
Zishun Li.Physical mechanism of seismic attenuation in a two-phase medium[J].Applied Geophysics,2008,5(1):9-17.
Authors:Zishun Li
Institution:(1) Exploration & Development Research Institute of Daqing Oil Field Company, Ltd., Daqing, 163712, China
Abstract:High-frequency seismic attenuation is conventionally attributed to anelastic absorption. In this paper, I present three studies on high-frequency seismic attenuation and propose that the physical mechanism results from the interference of elastic microscopic multiple scattering waves. First, I propose a new theory on wave propagation in a two-phase medium which is based on the concept that the basic unit for wave propagation is a nano-mass point. As a result of the elasticity variations of pore fluid and rock framework, micro multiple scattering waves would emerge at the wavelength of the seismic waves passing through the two-phase medium and their interference and overlap would generate high-frequency seismic attenuation. Second, I present a study of the frequency response of seismic transmitted waves by modeling thin-layers with thicknesses no larger than pore diameters. Results indicate that high-frequency seismic waves attenuate slightly in a near-surface water zone but decay significantly in a near-surface gas zone. Third, I analyze the seismic attenuation characteristics in near-surface water and gas zones using dual-well shots in the Songliao Basin, and demonstrate that the high-frequency seismic waves attenuate slightly in water zones but in gas zones the 160-1600 Hz propagating waves decay significantly. The seismic attenuation characteristics from field observations coincide with the modeling results. Conclusions drawn from these studies theoretically support seismic attenuation recovery.
Keywords:two-phase medium  seismic attenuation  nanometer  wave propagation theory  multiple scattering waves  
本文献已被 维普 万方数据 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号