首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Parameters of Dust Particles in the Martian Atmosphere
Authors:Dlugach  Zh M  Morozhenko  A V
Institution:(1) Main Astronomical Observatory, National Academy of Sciences of Ukraine, Goloseevo, Kiev, 03680, Ukraine
Abstract:A critical analysis of the methods and results of estimating the optical thickness of the dust component in the Martian atmosphere tau0, the particle size r 0, and the imaginary part of the refractive index n ihas shown the following. (1) Observational data on the brightness distribution over the Martian disk as well as the phase dependences of diffusely reflected light and the azimuthal dependences of diffusely transmitted light are most appropriate to use only for verifying the reliability of the aerosol parameters determined by other methods. (2) If the morning and evening fogs in the atmosphere are disregarded, the Bouguer–Lambert–Beer method used to analyze the solar-brightness attenuation measured on the planetary surface yields overestimated extraatmospheric solar intensity I 0and atmospheric optical depth tau0. At the Viking 1landing site, I 0and tau0could be overestimated by a factor of 1.7 and by 0.35, respectively. (3) The aerosol size determined by analyzing measurements of the azimuthal dependences for the Martian sky brightness at low elevations of the Sun most likely corresponds to the fog particles. (4) If overestimated values of I 0were used to standardize the observations of the solar radiation transmitted by the Martian atmosphere, then n iwere also overestimated; using overestimated tau0also affected the reliability of the latter. (5) The problem of reliability of the available tau0and r 0estimates for periods of high atmospheric transparency is yet to be solved. For the highest activity of the dust storm in 1971, it was found that 4.5 le r 0le 7.5 mgrm for the lognormal particle size distribution with sgr2= 0.2 and the optical thickness of a dust cloud tau0ge 15. (6) The spectral values of the apparent albedo of Mars measured in October 1971 at a phase angle of 42° in the spectral range 0.250 le lambda le 0.717 allowed the imaginary part of the refractive index to be estimated in terms of a model of a dust cloud composed of spherical particles with the lognormal size distribution with r 0= 4.5 mgrm and sgr2= 0.2.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号