首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Combined influence of sedimentation and vegetation on the soil carbon stocks of a coastal wetland in the Changjiang estuary
Abstract:Coastal wetlands play an important role in the global carbon cycle.Large quantities of sediment deposited in the Changjiang(Yangtze) estuary by the Changjiang River promote the propagation of coastal wetlands,the expansion of saltmarsh vegetation,and carbon sequestration.In this study,using the Chongming Dongtan Wetland in the Changjiang estuary as the study area,the spatial and temporal distribution of soil organic carbon(SOC) stocks and the influences of sedimentation and vegetation on the SOC stocks of the coastal wetland were examined in 2013.There was sediment accretion in the northern and middle areas of the wetland and in the Phragmites australis marsh in the southern area,and sediment erosion in the Scirpus mariqueter marsh and the bare mudflat in the southern area.More SOC accumulated in sediments of the vegetated marsh than in the bare mudflat.The total organic carbon(TOC) stocks increased in the above-ground biomass from spring to autumn and decreased in winter;in the below-ground biomass,they gradually increased from spring to winter.The TOC stocks were higher in the below-ground biomass than in the above-ground biomass in the P.australis and Spartina altemiflora marshes,but were lower in the below-ground biomass in S.mariqueter marsh.Stocks of SOC showed temporal variation and increased gradually in all transects from spring to winter.The SOC stocks tended to decrease from the high marsh down to the bare mudflat along the three transects in the order:P.australis marsh S.alterniflora marsh S.mariqueter marsh bare mudflat.The SOC stocks of the same vegetation type were higher in the northern and middle transects than in the southern transect.These results suggest that interactions between sedimentation and vegetation regulate the SOC stocks in the coastal wetland in the Changjiang estuary.
Keywords:
本文献已被 CNKI 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号