首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Kinetic fractionation of Fe isotopes during transport through a porous quartz-sand column
Authors:Alan Matthews  Simon Emmanuel  Haim Gvirtzman
Institution:a Institute of Earth Sciences, The Hebrew University of Jerusalem, Edmond Safra Givat Ram Campus, Jerusalem 91904, Israel
b Department of Geology and Geophysics, Yale University, P.O. Box 208109, New Haven, CT, 06520-8109, USA
Abstract:Sorption and desorption processes are an important part of biological and geochemical metallic isotope cycles. Here, we address the dynamic aspects of metallic isotopic fractionation in a theoretical and experimental study of Fe sorption and desorption during the transport of aqueous Fe(III) through a quartz-sand matrix. Transport equations describing the behavior of sorbing isotopic species in a water saturated homogeneous porous medium are presented; isotopic fractionation of the system (Δsorbedmetal-soln) being defined in terms of two parameters: (i) an equilibrium fractionation factor, αe; and (ii) a kinetic sorption factor, α1. These equations are applied in a numerical model that simulates the sorption-desorption of Fe isotopes during injection of a Fe(III) solution pulse into a quartz matrix at pH 0-2 and explores the effects of the kinetic and equilibrium parameters on the Fe-isotope evolution of porewater. The kinetic transport theory is applied to a series of experiments in which pulses of Na and Fe(III) chloride solutions were injected into a porous sand grain column. Fractionation factors of αe = 1.0003 ± 0.0001 and α1 = 0.9997 ± 0.0004 yielded the best fit between the transport model and the Fe concentration and δ56Fe data. The equilibrium fractionation (Δ56FesorbedFe-soln) of 0.3‰ is comparable with values deduced for adsorption of metallic cations on iron and manganese oxide surfaces and suggests that sandstone aquifers will fractionate metallic isotopes during sorption-desorption reactions. The ability of the equilibrium fractionation factor to describe a natural system, however, depends on the proximity to equilibrium, which is determined by the relative time scales of mass transfer and chemical reaction; low fluid transport rates should produce a system that is less dependent on kinetic effects. The results of this study are applicable to Fe-isotope fractionation in clastic sediments formed in highly acidic conditions; such conditions may have existed on Mars where acidic oxidizing ground and surface waters may have been responsible for clastic sedimentation and metallic element transport.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号