首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Energy balance of the Deep Impact experiment
Authors:O Groussin  M A’Hearn  T Farnham  J Kissel  J Melosh  J Sunshine
Institution:a Laboratoire d’Astrophysique de Marseille, Université de Provence, CNRS, 13388 Marseille Cedex 13, France
b University of Maryland, College Park, MD 20740, USA
c Belton Space Exploration Initiatives, Tucson, AZ 85716, USA
d MPI, 37191 Katlenburg-Lindau, Germany
e Applied Physics Laboratory, Laurel, MD 20723, USA
f Lunar and Planetary Laboratory, Tucson, AZ 85721, USA
g Brown University, Providence, RI 02912, USA
h Cornell University, Ithaca, NY 14853, USA
Abstract:We present results on the energy balance of the Deep Impact experiment based on analysis of 180 infrared spectra of the ejecta obtained by the Deep Impact spacecraft. We derive an output energy of 16.5 (+9.1/−4.1) GJ. With an input energy of 19.7 GJ, the error bars are large enough so that there may or may not be a balance between the kinetic energy of the impact and that of outflowing materials. Although possible, no other source of energy other than the impactor or the Sun is needed to explain the observations. Most of the energy (85%) goes into the hot plume in the first few seconds, which only represents a very small fraction (<0.01%) of the total ejected mass. The hot plume contains 190 (+263/−71) kg of H2O, 1.6 ± 0.5 kg of CO2, 8.2 (+11.3/3.1) kg of CO (assuming a CO/H2O ratio of 4.3%), 27.9 (+25.0/−8.9) kg of organic material and 255 ± 128 kg of dust, while the ejecta contains ∼107 kg of materials. About 12% of the energy goes into the ejecta (mostly water) and 3% to destroy the impactor. Volatiles species other than H2O (CO2, CO or organic molecules) contribute to <7% of the energy balance. In terms of physical processes, 68% of the energy is used to accelerate grains (kinetic energy), 16% to heat them, 6% to sublimate or melt them and 10% (upper limit) to break and compress dust and/or water ice aggregates into small micron size particles. For the hot plume, we derive a dust/H2O ratio of 1.3 (+1.9/−1.0), a CO2/H2O ratio of 0.008 (+0.009/−0.006), an organics/H2O ratio of 0.15 (+0.29/−0.11) and an organics/dust ratio of 0.11 (+0.30/−0.07). This composition refers to the impact site and is different from that of the bulk nucleus, consistent with the idea of layers of different composition in the nucleus sub-surface. Our results emphasize the importance of laboratory impact experiments to understand the physical processes involved at such a large scale.
Keywords:Comets  Comet Tempel-1  Comets  Composition
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号