首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The formation of Uranus and Neptune in solid-rich feeding zones: Connecting chemistry and dynamics
Authors:Sarah E Dodson-Robinson  Peter Bodenheimer
Institution:a University of Texas, Astronomy Department, 1 University Station C1400, Austin, TX 78712, USA
b UCO/Lick Observatory, University of California at Santa Cruz, 1156 High St., Santa Cruz, CA 95064, USA
Abstract:The core accretion theory of planet formation has at least two fundamental problems explaining the origins of Uranus and Neptune: (1) dynamical times in the trans-saturnian solar nebula are so long that core growth can take >15 Myr and (2) the onset of runaway gas accretion that begins when cores reach ∼10M necessitates a sudden gas accretion cutoff just as Uranus and Neptune’s cores reach critical mass. Both problems may be resolved by allowing the ice giants to migrate outward after their formation in solid-rich feeding zones with planetesimal surface densities well above the minimum-mass solar nebula. We present new simulations of the formation of Uranus and Neptune in the solid-rich disk of Dodson-Robinson et al. (Dodson-Robinson, S.E., Willacy, K., Bodenheimer, P., Turner, N.J., Beichman, C.A. 2009]. Icarus 200, 672-693) using the initial semimajor axis distribution of the Nice model (Gomes, R., Levison, H.F., Tsiganis, K., Morbidelli, A. 2005]. Nature 435, 466-469; Morbidelli, A., Levison, H.F., Tsiganis, K., Gomes, R. 2005]. Nature 435, 462-465; Tsiganis, K., Gomes, R., Morbidelli, A., Levison, H.F. 2005]. Nature 435, 459-461), with one ice giant forming at 12 AU and the other at 15 AU. The innermost ice giant reaches its present mass after 3.8-4.0 Myr and the outermost after 5.3-6 Myr, a considerable time decrease from previous one-dimensional simulations (e.g. Pollack, J.B., Hubickyj, O., Bodenheimer, P., Lissauer, J.J., Podolak, M., Greenzweig, Y. 1996]. Icarus 124, 62-85). The core masses stay subcritical, eliminating the need for a sudden gas accretion cutoff.Our calculated carbon mass fractions of 22% are in excellent agreement with the ice giant interior models of Podolak et al. (Podolak, M., Weizman, A., Marley, M. 1995]. Planet. Space Sci. 43, 1517-1522) and Marley et al. (Marley, M.S., Gómez, P., Podolak, M. 1995]. J. Geophys. Res. 100, 23349-23354). Based on the requirement that the ice giant-forming planetesimals contain >10% mass fractions of methane ice, we can reject any Solar System formation model that initially places Uranus and Neptune inside of Saturn’s orbit. We also demonstrate that a large population of planetesimals must be present in both ice giant feeding zones throughout the lifetime of the gaseous nebula. This research marks a substantial step forward in connecting both the dynamical and chemical aspects of planet formation. Although we cannot say that the solid-rich solar nebula model of Dodson-Robinson et al. (Dodson-Robinson, S.E., Willacy, K., Bodenheimer, P., Turner, N.J., Beichman, C.A. 2009]. Icarus 200, 672-693) gives exactly the appropriate initial conditions for planet formation, rigorous chemical and dynamical tests have at least revealed it to be a viable model of the early Solar System.
Keywords:Planetary formation  Uranus  Neptune  Origin  Solar System  Abundances  Interiors
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号