首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Crystallization of ice in Comet 17P/Holmes: Probably not responsible for the explosive 2007 megaburst
Authors:Konrad J Kossacki  Slawomira Szutowicz
Institution:a Institute of Geophysics of Warsaw University, Pasteura 7, 02-093 Warsaw, Poland
b Space Research Center of Polish Academy of Sciences, Bartycka 18a, 00-716 Warsaw, Poland
Abstract:Our work was inspired by the recent brightening of Comet 17P/Holmes. The recently observed increase in brightness of this comet was correlated with emission of dust, probably larger in mass than the dust mantle of the nucleus. We analyzed the hypothesis that the comet can eject a large mass of dust due to non-uniform crystallization of amorphous water ice. For this purpose, we simulated the evolution of a model nucleus on the orbit of Comet 17P/Holmes. The nucleus is composed of water ice and dust and has the shape of an elongated ellipsoid. The simulations include crystallization of amorphous ice in the nucleus, changes in the dust mantle thickness, and changes in the nucleus orientation in space. Our computations indicate that: (i) ejection of the dust cover triggers crystallization of ice independently on the material properties of the nucleus; (ii) moderate changes in the nucleus orientation (∼50°) may result in an acceleration of the crystallization of ice in the northern hemisphere, while a rather large change in the orientation (∼120°) is needed to cause a significant jump of the crystallization front in the southern hemisphere, where the emission of dust during the recent brightening was strongest. We investigated the possible reason for an explosion and we have found that the crystallization of the water ice itself is probably not sufficient.
Keywords:Comets  composition  Comets  nucleus  Ices
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号