首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Core formation in the Earth and Moon: new experimental constraints from V, Cr, and Mn
Authors:Nancy L Chabot  Carl B Agee
Institution:1 Department of Geological Sciences, 112 A. W. Smith Bldg., Case Western Reserve University, Cleveland, OH 44106-7216, USA
2 Mail Code SA, NASA Johnson Space Center, Houston, TX 77058, USA
Abstract:The mantles of the Earth and Moon are similarly depleted in V, Cr, and Mn relative to the concentrations of these elements in chondritic meteorites. The similar depletions have been used as evidence that the Moon inherited its mantle from the Earth after a giant impact event. We have conducted liquid metal-liquid silicate partitioning experiments for V, Cr, and Mn from 3 to 14 GPa and 1723 to 2573 K to understand the behavior of these elements during planetary core formation. Our experiments have included systematic studies of the effects of temperature, silicate composition, metallic S-content, metallic C-content, and pressure. Temperature has a significant effect on the partitioning of V, Cr, Mn, with all three elements increasing their partitioning into the metallic liquid with increasing temperature. In contrast, pressure is not observed to affect the partitioning behavior. The experimental results show the partitioning of Cr and Mn are hardly dependent on the silicate composition, whereas V partitions more strongly into depolymerized silicate melts. The addition of either S or C to the metallic liquid causes increased metal-silicate partition coefficients for all three elements. Parameterizing and applying the experimental data, we find that the Earth’s mantle depletions of V, Cr, and possibly Mn can be explained by core formation in a high-temperature magma ocean under oxygen fugacity conditions about two log units below the iron-wüstite buffer, though the depletion of Mn may be due entirely to its volatility. However, more oxidizing conditions proposed in recent core formation models for the Earth cannot account for any of the depletions. Additionally, because we observe no pressure effect on the partitioning behavior, the data do not require the mantle of the Moon to be derived from the Earth’s mantle, although this is not ruled out. All that is required to create depletions of V, Cr, and Mn in a mantle is a planetary body that is hot enough and reducing enough during its core formation. Such conditions could have existed on the Moon-forming impactor.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号