首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Evidence for the rapid incorporation of hopanoids into kerogen
Authors:Paul Farrimond  Andrew N Bishop  Helen E Innes  Colin E Snape
Institution:1 Fossil Fuels and Environmental Geochemistry, School of Civil Engineering and Geosciences, Drummond Building, University of Newcastle, Newcastle upon Tyne, NE1 7RU, UK
2 School of Chemical, Environmental and Mining Engineering (SChEME), University of Nottingham, University Park, Nottingham, NG7 2RD, UK
Abstract:Hopanoids bound into the insoluble organic matter (kerogen) of Recent sediments from a freshwater lake (Priest Pot) and an anoxic sulphidic fjord (Framvaren) were released by hydropyrolysis and examined by gas chromatography-mass spectrometry. Bound hopanoids are present in high concentration (190-1400 μg/g TOC) and represent 22 to 86% of the total analysable hopanoids (i.e., bound and solvent-soluble), this proportion increasing with depth in Framvaren Fjord. The hopanes generated by hydropyrolysis contain higher amounts of the C35, C32, and C30 homologues, reflecting the carbon number distribution of the bound hopanoids and indicating that both biohopanoids (C30 and C35) and their diagenetic products (dominated by C32) are incorporated into the kerogen on a timescale of only 0 to 350 years. Sequential (multiple temperature) hydropyrolysis experiments gave an indication of the relative strengths of bonds being cleaved in association with hopane generation: The hopanoids of a sediment from Priest Pot are almost entirely bound by strong covalent bonds, interpreted to be mainly ether linkages, whilst a Framvaren sediment contains hopanoids that are bound by a mixture of weak di-/polysulphide linkages and stronger ether bonds. Labelling with deuterium indicated that the strong covalent linkages dominate, even for the Framvaren sediment.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号