首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The scale effect on the soil spatial heterogeneity of Haloxylon ammodendron (C. A. Mey.) in a sandy desert
Authors:Congjuan Li  Xiang Shi  Jiaqiang Lei  Xinwen Xu
Institution:1. Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, National Engineering Technology Research Center for Desert-Oasis Ecological Construction, 818 South Beijing Road, Urumqi, 830011, Xinjiang, People’s Republic of China
2. Forestry College, College of Agriculture in Shihezi University, Shihezi, 832011, Xinjiang, People’s Republic of China
Abstract:Haloxylon ammodendron Bge (C.A. Mey.) is a dominant shrub species in the Gurbantonggut Desert and plays an important role in preventing wind erosion and combating desertification, typically by developing fertile islands in desert ecosystems; however, such islands often depend on the scales. An experiment was conducted to determine the scale dependence for the soil spatial heterogeneity of H. ammodendron in the Gurbantonggut Desert using the soil pH, electrical conductivity (EC), soil organic carbon (SOC), and total nitrogen (TN). The results showed that the soil EC, SOC and TN were significantly higher at the individual scale than the population scale. Moreover, the coefficients of variation (CV %) of the soil parameters at the individual scale were greater than they were at the population scale, with all except for pH (CV = 4.35 % for individual scale and CV = 2.87 % for population scale) presenting a moderate degree of variability (10 % < CV < 100 %). A geostatistical analysis revealed a strong spatial dependence C 0 /(C 0 + C) < 25 %] within the distance of ranges for the tested parameters at both scales. The kriging interpolation results presented significant accumulation of soil SOC and TN around the shrub center and formed a significant “fertile island” at the individual scale, whereas the soil EC was much lower at the shrub center. At the population scale, patch fragments of the soil chemical properties were observed; however, not all individuals presented significant fertile islands or salt islands, and the soil EC presented a similar distribution as SOC and TN. These differences suggested that different mechanisms controlled the spatial distribution of soil minerals at the two scales and that the spatial heterogeneities are scale-dependent in a desert ecosystem.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号