首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Correlation between seismic anisotropy and Bouguer gravity anomalies in Tibet and its implications for lithospheric structures
Authors:Wang-Ping Chen  & Serdar Özalaybey
Institution:Department of Geology, University of Illinois, Urbana, IL  61801, USA. E-mail: w-
Abstract:As a baseline measurement for understanding the Himalayan–Tibetan orogen, a product of continent–continent collision between India and Eurasia, we analyse digital seismic data in order to constrain the seismic anisotropy of the Indian shield. Based on spatially sparse data that are currently available in the public domain, there is little shear-wave birefringence for SKS phases under the Indian shield, even though it is part of a fast-moving plate in the hotspot frame of reference. If most of the northern Indian mantle has little transverse anisotropy, the onset of significant anisotropy under Tibet marks the northern terminus of intact Indian lithosphere that is thrusting under the Himalayan–Tibetan orogen. Beyond this terminus, tectonic fabric such as that associated with the deforming lithospheric mantle of Eurasia must be present in the upper mantle. Along the profile from Yadong to Golmud, the only profile in Tibet where a number of shear-wave birefringence data are available, the amount of birefringence shows two marked increases, near 30° and 33°N, between which a local high in Bouguer gravity anomaly is observed. Such a correlation between patterns of shear-wave birefringence and gravity anomalies is explained by the juxtaposition of Indian lithosphere against the overlying Eurasian lithosphere: while the Eurasian lithospheric mantle appears only to the north of 30°N, the Indian lithospheric mantle extends northwards to near 33°N.
Keywords:anisotropy  body waves  collisional belt  gravity anomaly  lithospheric deformation  Tibet  
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号