首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Al/Si interdiffusion in albite: effect of pressure and the role of hydrogen
Authors:Julian R Goldsmith
Institution:(1) Department of the Geophysical Sciences, The University of Chicago, 5734 South Ellis Avenue, 60637 Chicago, IL, USA
Abstract:The effect of pressure on the rate of Al/Si disorder in albite has been determined at temperatures from 800° C to 1050° C and at pressures up to 24 kbar, using dried samples in welded Pt containers, in piston-cylinder devices and internally-heated gas apparatus. In the piston-cylinder device with NaCl medium, the effect of pressure is profound. A pure low albite from Clear Creek, California reaches the equilibrium state of disorder at 850° C and 22 kbar in 10 h, whereas at 6 kbar it has not equilibrated in three weeks, and at one bar it probably cannot be disordered at 850° C in the laboratory. The enhancement of Al/Si interdiffusion takes place under dry conditions: any H2O penetrating the samples would have produced melting, and none was observed. Hydrogen, however, is produced by dissociation of moisture in the pressure medium and can penetrate the Pt sample capsules. If the samples are deprived of hydrogen by replacing NaCl with glass or by embedding the samples in a hydrogen getter such as Fe2O3 or ZnO, the order-disorder reaction is greatly inhibited.A mechanism is suggested in which OH groups are formed by hydrogen hopping in albite. The smaller charge on the tetrahedral complex induces transient coordination of Al greater than four at elevated pressures, facilitating Al/Si interchange during the bond-breaking process. This results in an exponential pressure dependence of diffusion. It is also suggested that the presence of hydrogen at high pressures can greatly effect the mechanical properties and reactivity of deep crustal and mantle rocks. In nature, as well as in the laboratory, equilibration at elevated pressures may be as much dependent on the availability of hydrogen as on time or temperature.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号