首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Analysis of transient groundwater flow through a stochastic modelling approach
Authors:Patience Bosompemaa  Sandow Mark Yidana  Larry Pax Chegbeleh
Institution:1.Department of Earth Science,University of Ghana,Accra,Ghana
Abstract:This study demonstrates the application of a stochastic procedure to enhance confidence in the predictions of numerical groundwater flow models. The objective was to assess the hydrogeological conditions and groundwater potential of a semi-confined aquifer system in Legon, Accra. The study applied the parameter randomization procedure in the Groundwater Modelling System (GMS) to evaluate model uncertainties arising from uncertainties in the data of model input parameters. A total of 2500 equally likely solutions of the numerical model were simulated through the Latin hypercube stochastic option. Regarding the size of the terrain and the number of parameters used for calibrating the model, the 2500 model realizations were adjudged to be largely sufficient to represent the possible solutions that could arise from the various permutations of the parameter data. High variances would suggest significant differences in the realizations, indicating high levels of non-uniqueness in the solutions. The 2500 solutions were compared using standard deviations computed from the differences in the estimated horizontal hydraulic conductivity, specific yield and specific storage estimates. The transient model calibrated for this domain suggests very close similarities in the model-computed aquifer parameters for all the 2500 solutions. This suggests that any of the solutions could be used to represent the conditions prevailing in the domain. Risk analyses were then performed on abstractions through all the 2500 solutions. The study shows that the domain is sustained largely by lateral subsurface inflows from adjoining areas amounting to 399,278 m3/day, with direct vertical infiltration and percolation of precipitation accounting for an average of 2450 m3/day. The analysis suggests that at this rate of input, the domain can sustain groundwater abstraction to meet all water needs in the area. In addition, the domain has demonstrated resilience against annual increment in abstraction rates by 5 % over a 20-year period at the current recharge conditions. However, increasing abstraction rates by up to 200 % of the current abstraction rates over the 20-year period (2015–2035) but with a gradual decrease in groundwater recharge by up to 10 % over the period will result in drastic lowering of the hydraulic head especially in the south-central portions of the domain. This situation might induce reversal of the current flow and potentially lead to contamination and/or aquifer dewatering in the domain.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号