首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Microphysical Properties of Rainwater in Typhoon Usagi(2013):A Numerical Modeling Study
Authors:Lin DENG  Wenhua GAO  Yihong DUAN  Yuqing WANG
Abstract:A 2-km resolution simulation using the Weather Research and Forecasting model with Morrison microphysics was employed to investigate the rainwater microphysical properties during different stages of Typhoon Usagi(2013) in the inner-core and outer region. The model reproduced the track, intensity, and overall structure of Usagi(2013) reasonably. The simulated raindrop size distribution showed a rapid increase in small-size raindrop concentration but an oscillated decrease in large-size ones in the inner-core region, corresponding well with the upward motion. It was found that there existed two levels(1.25 and 5.25 km) of maximum number concentration of raindrops. The ice-related microphysics at high levels was stronger than the warm-rain processes at low levels. The larger raindrops formed by self-collection in the inner-core suffered from significant breakup, but the raindrops outside the eyewall did not experience evident breakup. Model results indicated that the dominant terms in the water vapor budget were the horizontal moisture flux convergence(HFC) and local condensation and deposition. The evaporation from the ocean surface(PBL) was ~10% of the HFC in the inner core, but up to 40% in the outer region as the air therein was far from saturation. Furthermore, water vapor in the outer region was obtained equally through evaporation from the cloud and inward transportation from the environment. An earlier start of cloud microphysical processes in the inner-core region was evident during the intensification stage, and the continuous decreasing of condensation in both the inner-core and outer regions might imply the beginning of the storm weakening.
Keywords:raindrops  microphysical properties  typhoon  simulation
本文献已被 CNKI 维普 万方数据 等数据库收录!
点击此处可从《大气科学进展》浏览原始摘要信息
点击此处可从《大气科学进展》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号