首页 | 本学科首页   官方微博 | 高级检索  
     检索      


LASG Global AGCM with a Two-moment Cloud Microphysics Scheme:Energy Balance and Cloud Radiative Forcing Characteristics
Authors:Lei WANG  Qing BAO  Wei-Chyung WANG  Yimin LIU  Guo-Xiong WU  Linjiong ZHOU  JiANDong LI  Hua GONG  Guokui NIAN  Jinxiao LI  Xiaocong WANG  Bian HE
Abstract:Cloud dominates influence factors of atmospheric radiation, while aerosol-cloud interactions are of vital importance in its spatiotemporal distribution. In this study, a two-moment (mass and number) cloud microphysics scheme, which significantly improved the treatment of the coupled processes of aerosols and clouds, was incorporated into version 1.1 of the IAP/ LASG global Finite-volume Atmospheric Model (FAMIL1.1). For illustrative purposes, the characteristics of the energy balance and cloud radiative forcing (CRF) in an AMIP-type simulation with prescribed aerosols were compared with those in observational/reanalysis data. Even within the constraints of the prescribed aerosol mass, the model simulated global mean energy balance at the top of the atmosphere (TOA) and at the Earth's surface, as well as their seasonal variation, are in good agreement with the observational data. The maximum deviation terms lie in the surface downwelling longwave radiation and surface latent heat flux, which are 3.5 W m-2 (1%) and 3 W m-2 (3.5%), individually. The spatial correlations of the annual TOA net radiation flux and the net CRF between simulation and observation were around 0.97 and 0.90, respectively. A major weakness is that FAMIL1.1 predicts more liquid water content and less ice water content over most oceans. Detailed comparisons are presented for a number of regions, with a focus on the Asian monsoon region (AMR). The results indicate that FAMIL1.1 well reproduces the summer-winter contrast for both the geographical distribution of the longwave CRF and shortwave CRF over the AMR. Finally, the model bias and possible solutions, as well as further works to develop FAMIL1.1 are discussed.
Keywords:two-moment cloud microphysics scheme  aerosol-cloud interactions  energy balance  cloud radiative forcing  Asian monsoon region
本文献已被 CNKI 等数据库收录!
点击此处可从《大气科学进展》浏览原始摘要信息
点击此处可从《大气科学进展》下载免费的PDF全文
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号