首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Volume Height Estimation based on Fusion of Discrete Fourier Transform (DFT) and Least Square (LS) in a Tomographic SAR Application
Authors:Hichem Mahgoun  Mounira Ouarzeddine
Institution:1.Faculty of Electronics and Computer Science, Laboratory of Images Processing and Radiation,University of Science and Technology Houari Boumediene,Algiers,Algeria
Abstract:Tomographic-SAR (Synthetic Aperture Radar) is a 3D Radar imaging technique, based on spectral estimation tools. This technique is used to estimate the distribution of the backscattering signal in the elevation axis, for each azimuth-range resolution cell of the SAR image. Spectral estimation algorithms belong to two families, non parametric estimation algorithms which include DFT (Discrete Fourier Transform), SVD (Single Value Decomposition), MUSIC (Multiple Signal Classification), CAPON and parametric estimation algorithms such as LS (Least Square) and ESPRIT (Estimation of signal parameters via rotation invariance techniques). In this paper we present an inversion algorithm based on the fusion of DFT and LS for the estimation of the reflectivity signal along the elevation axis. With an appropriate combination of these two algorithms and a realistic modeling of the signal distribution, we obtain a high resolution estimate of the reflectivity signal with medium computational effort. The inversion algorithm is tested on a forested area (Västerbotten in northern Sweden), with multibaseline data set acquired in L-band (BioSAR-2008 project). Results are promising with the proposed algorithm. We used MUSIC and RVoG (Random Volume over Ground) inversions for comparison and LIDAR (Laser Imaging Detection And Ranging) image as datasets for validation of the results.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号