首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Simulation of f-Mode Propagation Through a Cluster of Small Identical Magnetic Flux Tubes
Authors:K Daiffallah
Institution:1. Observatory of Algiers, CRAAG, Algiers, Algeria
Abstract:Motivated by the question of how to distinguish seismically between monolithic and cluster models of sunspots, we have simulated the propagation of an f-mode wave packet through two identical small magnetic flux tubes (R=200 km), embedded in a stratified atmosphere. We want to study the effect of separation d and incidence angle χ on the scattered wave. We have demonstrated that the horizontal compact pair of tubes (d/R=2, χ=0) oscillate as a single tube when the incident wave is propagating, which gives a scattered wave amplitude of about twice that from a single tube. The scattered amplitude decreases with increasing d when d is about λ/2π where λ is the wavelength of the incident wave packet. In this case the individual tubes start to oscillate separately in the manner of near-field scattering. When d is about twice λ/2π, scattering from individual tubes reaches the far-field regime, giving rise to coherent scattering with an amplitude similar to the case of the compact pair of tubes. For perpendicular incidence (χ=π/2), the tubes oscillate simultaneously with the incident wave packet. Moreover, simulations show that a compact cluster oscillates almost as a single individual small tube and acts more like a scattering object, while a loose cluster shows multiple-scattering in the near field and the absorption is largest when d within the cluster is about λ/2π. This is the first step to understand the seismic response of a bundle of magnetic flux tubes in the context of sunspot and plage helioseismology.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号