首页 | 本学科首页   官方微博 | 高级检索  
     检索      


The Portuguese bend landslide
Authors:Karl Vonder Linden
Institution:

aConsulting Geologist, 5 Stowe Lane, Menlo Park, CA 94025, U.S.A.

Abstract:The Portuguese Bend landslide, in coastal southern California, is an active, slow-moving mass of blocks and debris that extends from the shoreline to moderate altitudes along part of the southerly margin of the Palos Verdes Hills. These hills form a peninsula that is underlain by Cenozoic sedimentary and volcanic rocks draped anticlinally over a core of Mesozoic schist. In the southerly parts of the peninsula, inherently weak units in the Altamira Shale Member of the Miocene Monterey Formation dip seaward in general concordance with the ground surface. Ground failure has been widespread in this area. It evidently began in mid- to late-Pleistocene time, and it has continued intermittently to the present.

The Portuguese Bend landslide represents a reactivation of movement of the eastern part of a complex of prehistoric landslides occupying an area of approximately two square miles. This latest episode of movement began in 1956, presumably in response to placement of fill during a road construction project. The active slide subsequently was enlarged by sequential failure of adjoining blocks of ground, and by September 1969 about 54,500,000 metric tons of debris was slowly moving downslope in an area of approximately 104 ha. Movement has been continuous since recent failure began in 1956, although the velocity of the active slide decreased markedly after that year. Between 1962 and 1972 the velocity fluctuated only slightly about an average value of about 1 cm per day.

The active slide is an irregular prism, roughly triangular in plan view. The southern side of the triangle trends approximately 1100 m east-west along a stretch of shoreline that essentially coincides with the toe of the slide. The other two sides of the triangle trend northeast and northwest from the ends of the toe and meet about 1200 m north of the shoreline. The thickness of the moving mass differs considerably from one place to another, reflecting both topographic irregularities and major undulations in the underlying surface of movement. The maximum thickness is approximately 75 m.

Movement is occurring along a distinct basal failure surface. The eastern part of the slide is underlain by bedrock, and is bordered by bedrock with a general structure that limits further deep-seated propagation of failure to the east and northeast. In contrast, the western part of the slide is underlain and bordered by extensive ancient landslide deposits that are marginally stable. Further encroachment of the active slide westward and northwestward into these materials was viewed as a distinct possibility at the time the dissertation was prepared and has occurred since then.

Continued movement of the Portuguese Bend landslide since 1956 has been due to four main factors. A rise in the water table during the period 1957–1968 has been documented in the northwestern part of the moving mass and is attributable mainly to infiltration of surface runoff entering numerous open fissures that cut the surface of the slide. The toe of the active slide daylights along the shoreline and is subjected to storm-wave erosion, so that any natural build-up of resisting forces is prevented in this area. The redistribution of mass as the slide has moved along an undulatory failure surface has been responsible for local fluctuations in the driving and resisting forces. Finally, smoothing of irregularities in the failure surface by the moving slide mass must have decreased some of the forces resisting movement.

Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号