首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Elevation trends and shrink–swell response of wetland soils to flooding and drying
Authors:Donald R Cahoon  Brian C Perez  Bradley D Segura  James C Lynch  
Institution:a United States Geological Survey, Patuxent Wildlife Research Center, 10300 Baltimore Avenue, BARC-East, Bldg. 308, Beltsville, MD 20705, USA;b United States Geological Survey, National Wetlands Research Center, 700 Cajundome Blvd., Lafayette, LA 70506, USA;c Johnson Controls World Services, Inc., National Wetlands Research Center, 700 Cajundome Blvd., Lafayette, LA 70506, USA
Abstract:Given the potential for a projected acceleration in sea-level rise to impact wetland sustainability over the next century, a better understanding is needed of climate-related drivers that influence the processes controlling wetland elevation. Changes in local hydrology and groundwater conditions can cause short-term perturbations to marsh elevation trends through shrink–swell of marsh soils. To better understand the magnitude of these perturbations and their impacts on marsh elevation trends, we measured vertical accretion and elevation dynamics in microtidal marshes in Texas and Louisiana during and after the extreme drought conditions that existed there from 1998 to 2000. In a Louisiana marsh, elevation was controlled by subsurface hydrologic fluxes occurring below the root zone but above the 4 m depth (i.e., the base of the surface elevation table benchmark) that were related to regional drought and local meteorological conditions, with marsh elevation tracking water level variations closely. In Texas, a rapid decline in marsh elevation was related to severe drought conditions, which lowered local groundwater levels. Unfragmented marshes experienced smaller water level drawdowns and more rapid marsh elevation recovery than fragmented marshes. It appears that extended drawdowns lead to increased substrate consolidation making it less resilient to respond to future favorable conditions. Overall, changes in water storage lead to rapid and large short-term impacts on marsh elevation that are as much as five times greater than the long-term elevation trend, indicating the importance of long-term, high-resolution elevation data sets to understand the prolonged effects of water deficits on marsh elevation change.
Keywords:droughts  salt marsh elevation  continuous elevation sensor  USA  Louisiana  Old Oyster Bayou  USA  Texas  McFaddin National Wildlife Refuge
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号