首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Sediment flux and equilibrium slopes in a barred nearshore
Authors:Brian Greenwood  Peter R Mittler  
Institution:

1 Department of Geography, Scarborough Campus, University of Toronto, Scarborough, Ont. M1C 1A4, Canada

2 Department of Geology, Scarborough Campus, University of Toronto, Scarborough, Ont. M1C 1A4, Canada

3 Department of Geography, Scarborough Campus, University of Toronto, Scarborough, Ont. M1C 1A4, Canada

Abstract:Estimates of time-integrated values of total (ITVF) and net (INVF) sediment volume flux and the associated changes in bed elevation and local slope were determined for a crescentic outer nearshore bar in Kouchibouguac Bay, New Brunswick, Canada, for eight discrete storm events. A 100 × 150 m grid of depth-of-activity rods spaced at 10 m intervals was used to monitor sediment behaviour on the seaward slope, bar crest and landward slope during the storms, at which time winds, incident waves and near-bed oscillatory currents were measured. Comparisons between storm events and between these events and a longer-term synthetic wave climatology were facilitated using hindcast wave parameters. Strong positive correlations between storm-wave conditions (significant height and total cumulative energy) and total volume flux contrasted strongly with the zero correlation between storm-wave conditions and net volume flux. ITVF values ranged up to 1646 m3 for the experimental grid and were found to have power function relations with significant wave height (exponent reverse similar, equals 2) and cumulative wave wave energy (exponent reverse similar, equals 0.4); values of INVF ranged from 0 up to 100 m3 for the same grid indicating a balance of sediment volume in the bar form through time. Sediment reactivation increased linearly with decreasing depth across the seaward slope and bar crest reaching maxima of 20 cm for the two largest storms; bed elevation, and thus slope, changes were restricted to the bar crest and upper landward slope with near zero morphological change on the seaward slope. The latter represents a steady-state equilibrium with null net transport of sediment under shoaling waves. Measurements of the asymmetry of orbital velocities close to the bed show that the energetics approach to predicting beach slope of Inman and Bagnold (1963) is sound. Gradients predicted vary from 0.01 to 0.03 for a range of angles of internal friction appropriate to the local sediment (tan ø = 0.3–0.6). These compare favorably with the measured seaward slope of 0.015 formed under average maximum orbital velocities of 1.12 m s?1 (landward) and 1.09 m s?1 (seaward) recorded during the period of the largest storm waves.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号