首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Jupiter-Io electrodynamic interaction
Authors:J H Piddington
Institution:(1) National Measurement Laboratory, CSIRO, Sydney, Australia
Abstract:Strong interaction between Jupiter and its satellite Io is revealed by the control of the decametric radiation, by the distributions of energetic particles, and perhaps by the location of the boundary of Jupiter's plasmasphere near Io's magnetic flux tube. Two opposed theories of this interaction depend on different relative motions of Io and its flux tube. In one case the flux tube is frozen into Io and moves with Io, while in the plasma-sheath model Io moves freely across magnetic field lines. It is shown that the plasma-sheath model is unacceptable, and that Io must drive its flux tube through the magnetosphere. The first error in the sheath theory is in the mechanism of sheath creation by thermal and photoelectric electrons. The second error is in the neglect of electric currents driven through the external plasma by powerful space-charge fields. The third error is in the neglect of hydromagnetic effects of electric currents in Io: the magnetic perturbations, Lorentz forces and power supplied from the kinetic energy of Io. These effects show that Io's force tube is dragged along with Io. This frozenin model is discussed briefly in connection with energetic electrons, the decametric emission, Io's ionosphere and Jupiter's plasmasphere.
Keywords:
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号