首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Seepage measurements from Long Lake,Indiana Dunes National Lakeshore
Authors:S A Isiorho  F M Beeching  P M Stewart  R L Whitman
Institution:(1) Geosciences Dept., Indiana University – Purdue University Fort Wayne (IPFW), Fort Wayne, IN 46805, USA, IN;(2) National Biological Service, 1100 N. Mineral Springs Raod, Porter, IN 46304, USA, US
Abstract: Long Lake, located near Lake Michigan within the dune-complexes of Indiana Dunes National Lakeshore, USA, was formed some time during the Pleistocene and Holocene epochs. A surficial aquifer underlies Long Lake, which is either a source or sink for the later. The hydrologic processes in the lakeshore and surrounding environs have been significantly altered during the agricultural, municipal, and industrial development of the region. Limited data suggest that the organisms of Long Lake have elevated levels of several contaminants. This study attempts to quantify seepage within the lake to assess the potential threat to groundwater quality. Seepage measurements and minipiezometric tests were used to determine seepage within the lake. Seepage measurements and minipiezometric tests suggest that water seeps out of Long Lake, thus recharging the groundwater that flows southwest away from the lake. There is a great deal of variability in the seepage rate, with a mean of 11.5×10–4±11.2×10–4 m d–1. The mean seepage rate of 0.3 m yr–1 for Long Lake is greater than the 0.2 m yr–1 recharge rate estimated for the drainage basin area. The Long Lake recharge volume of 2.5×105 m3 yr–1 is approximately 22% of the volume of the lake and is significant when compared to the total surface recharge volume of 4.8×105 m3 yr–1 to the upper aquifer of the drainage area. There is a potential for contamination of the groundwater system through seepage from the lake from contaminants derived from aerial depositions. Received: 16 August 1995 · Accepted: 18 September 1995
Keywords:  Long Lake  Seepage  Minipiezometers  Indiana Dunes National  Lakeshore
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号