首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Finite element analysis of steady-state natural convection problems in fluid-saturated porous media heated from below
Authors:Chongbin Zhao  H B Mühlhaus  B E Hobbs
Abstract:In this paper, a progressive asymptotic approach procedure is presented for solving the steady-state Horton–Rogers–Lapwood problem in a fluid-saturated porous medium. The Horton–Rogers–Lapwood problem possesses a bifurcation and, therefore, makes the direct use of conventional finite element methods difficult. Even if the Rayleigh number is high enough to drive the occurrence of natural convection in a fluid-saturated porous medium, the conventional methods will often produce a trivial non-convective solution. This difficulty can be overcome using the progressive asymptotic approach procedure associated with the finite element method. The method considers a series of modified Horton–Rogers–Lapwood problems in which gravity is assumed to tilt a small angle away from vertical. The main idea behind the progressive asymptotic approach procedure is that through solving a sequence of such modified problems with decreasing tilt, an accurate non-zero velocity solution to the Horton–Rogers–Lapwood problem can be obtained. This solution provides a very good initial prediction for the solution to the original Horton–Rogers–Lapwood problem so that the non-zero velocity solution can be successfully obtained when the tilted angle is set to zero. Comparison of numerical solutions with analytical ones to a benchmark problem of any rectangular geometry has demonstrated the usefulness of the present progressive asymptotic approach procedure. Finally, the procedure has been used to investigate the effect of basin shapes on natural convection of pore-fluid in a porous medium. © 1997 by John Wiley & Sons, Ltd.
Keywords:progressive asymptotic approach  natural convection  porous media  bifurcation
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号