首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Empirically derived relationships between fractal dimension and power law form frequency spectra
Authors:Christopher G Fox
Institution:(1) National Oceanic and Atmospheric Administration, Pacific Marine Environmental Laboratory, Hatfield Marine Science Center, 97365 Newport, Oregon, USA
Abstract:Fractal analysis and Fourier analysis are independent techniques for quantitatively describing the variability of natural figures. Both methods have been applied to a variety of natural phenomena. Previous analytical work has formulated relationships between the fractal dimension and power law form frequency spectrum.Mandelbrot (1985) has shown that difficulties arise when the ruler method for measuring dimensionality is applied to other than self-similar figures. Since an investigator presumably does not know in advance the dimensionality of a natural profile, it is essential to quantify the nature of the discrepancy for self-affine cases. In this study, a series of experiments are conducted in which discrete random series of specified spectral forms are analyzed using the fractal ruler method. The various parameters of the fractal measurement are related to the parameters of the spectral model. In this way, empirical relationships between the techniques can be derived for discrete, finite series which simulate the results of applying the fractal method to observational data.The results of the study indicate that there are considerable discrepancies between the results predicted by theory and those derived empirically. The fundamental power law form of length versus resolution pairs does not hold over the entire region of analysis. The predicted linear relationship between fractal dimension and exponent of the frequency spectrum does not hold, and the spectral signals can be extended beyond the limits of dimension inferred by theory. Root-mean-square variability is also shown to be linearly related to the fractal intercept term. An investigation of the effect of nonstationary sampling is conducted by generating signals composed of segments of differing spectral characteristics. Fractal analyses of these signals appear identical to those conducted on stationary series.The discrepancies between theoretical prediction and empirical results described in this study reflect the difficulties of applying analytically derived techniques to measurement data. Both Fourier and fractal techniques are formulated through rigorous mathematics, assuming various conditions for the underlying signal. When these techniques are applied to discrete, finite length, nonstationary series, certain statistical transformations must be applied to the data. Methods such as windowing, prewhitening, and anti-aliasing filters have been developed over many years for use with Fourier analysis. At present, no such statistical theory exists for use with fractal analysis. It is apparent from the results of this study that such a statistical foundation is required before the fractal ruler method can be routinely applied to observational data.
Keywords:Fourier analysis  fractal  frequency spectra  roughness  stationarity  numerical modeling
本文献已被 SpringerLink 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号