首页 | 本学科首页   官方微博 | 高级检索  
     检索      


Enhanced microbial reduction of Cr(VI) and U(VI) by different natural organic matter fractions
Authors:Baohua Gu  Jie Chen
Institution:1 Environmental Sciences Division, Oak Ridge National Laboratory, P.O. Box 2008, MS 6036, Oak Ridge, TN 37831-6036, USA
Abstract:Although direct microbial reduction of Cr(VI) and U(VI) is known, few studies have examined the kinetics and the underlying mechanisms of the reduction of these contaminants by different natural organic matter (NOM) fractions in the presence or absence of microorganisms. In this study, NOM was found to chemically reduce Cr(VI) at pH 3, but the reduction rates were negligible at pH ∼7. The abiotic reduction of U(VI) by NOM was not observed, possibly because of the presence of small amounts of nitrate in the reactant solution. However, all NOM fractions, particularly the soil humic acid (HA), enhanced the bioreduction of Cr(VI) or U(VI) in the presence of Shewanella putrefaciens CN32. The reduction rates varied greatly among NOM fractions with different chemical and structural properties: the polyphenolic-rich NOM-PP fraction appeared to be the most reactive in abiotically reducing Cr(VI) at a low pH, but soil HA was more effective in mediating the microbial reduction of Cr(VI) and U(VI) under anaerobic, circumneutral pH conditions. These observations are attributed to an increased solubility and conformational changes of the soil HA with pH and, more importantly, its relatively high contents of polycondensed and conjugated aromatic organic moieties. An important implication of this study is that, depending on chemical and structural properties, different NOM components may play different roles in enhancing the bioreduction of Cr(VI) and U(VI) by microorganisms. Polycondensed aromatic humic materials may be particularly useful in mediating the bioreduction and rapid immobilization of these contaminant metals in soil.
Keywords:
本文献已被 ScienceDirect 等数据库收录!
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号